Measurement of the Top Mass in a Threshold Scan at Linear Colliders

Michal Tesař

Max-Planck-Intitut für Physik

Particle Physics School Colloquium

München

November 15th, 2013

Conclusions & Summary

- Puture linear colliders
- The top quark
- Top threshold scan
- **5** Conclusions & Summary

Motivation & the goal

Top quark mass:

- cannot be calculated from the Standard Model, it is an input parameter
- important for calculation of electroweak radiative corrections
- connected to strong coupling constant, Higgs Yuakawa coupling, Higgs mass, etc.
- issues regarding top mass definitions

Motivation & the goal

Top quark mass:

- cannot be calculated from the Standard Model, it is an input parameter
- important for calculation of electroweak radiative corrections
- connected to strong coupling constant, Higgs Yuakawa coupling, Higgs mass, etc.
- issues regarding top mass definitions

Goal of the simulation:

 \Rightarrow statistical and systematical uncertainties of top quark mass and strong coupling constant at future linear e^+e^- colliders

Motivation & the goal

Top quark mass:

- cannot be calculated from the Standard Model, it is an input parameter
- important for calculation of electroweak radiative corrections
- connected to strong coupling constant, Higgs Yuakawa coupling, Higgs mass, etc.
- issues regarding top mass definitions

Goal of the simulation:

 \Rightarrow statistical and systematical uncertainties of top quark mass and strong coupling constant at future linear e^+e^- colliders

Method: $t\bar{t}$ production threshold scan

Future linear *e*⁺*e*⁻ colliders

International Linear Collider (ILC):

- $\sqrt{s} = 500$ GeV, length 31 km
- $\sqrt{s} = 1$ TeV, length 53 km (upgrade)
- two interchangeable detector systems
- super-conducting RF cavities

Future linear e^+e^- colliders

International Linear Collider (ILC):

- $\sqrt{s} = 500$ GeV, length 31 km
- $\sqrt{s} = 1$ TeV, length 53 km (upgrade)
- two interchangeable detector systems
- super-conducting RF cavities

Compact Linear Collider (CLIC):

- $\sqrt{s} = 500$ GeV, length 13 km
- $\sqrt{s} = 3$ TeV, length 48 km (3rd stage)
- "two beam acceleration"
- 0.5 ns bunch spacing

- should use technology of classical super-conducting RF cavities
- average electrical field gradient for $\sqrt{s} = 500 \text{ GeV}$ is 31.5 MV/m

- should use technology of classical super-conducting RF cavities
- average electrical field gradient for $\sqrt{s} = 500 \text{ GeV}$ is 31.5 MV/m

- should use technology of classical super-conducting RF cavities
- average electrical field gradient for $\sqrt{s} = 500 \text{ GeV}$ is 31.5 MV/m

- should use technology of classical super-conducting RF cavities
- average electrical field gradient for $\sqrt{s} = 500 \text{ GeV}$ is 31.5 MV/m

ILC:

- should use technology of classical super-conducting RF cavities
- average electrical field gradient for $\sqrt{s} = 500 \text{ GeV}$ is 31.5 MV/m

- due to limitations of RF cavities:
- \Rightarrow two beam acceleration

ILC:

- should use technology of classical super-conducting RF cavities
- average electrical field gradient for $\sqrt{s} = 500 \text{ GeV}$ is 31.5 MV/m

- due to limitations of RF cavities:
- \Rightarrow two beam acceleration
 - low energy/high intensity beam \rightarrow

ILC:

- should use technology of classical super-conducting RF cavities
- average electrical field gradient for $\sqrt{s} = 500 \text{ GeV}$ is 31.5 MV/m

- due to limitations of RF cavities:
- \Rightarrow two beam acceleration
 - low energy/high intensity beam →

Measurement of the Top Mass in a Threshold Scan at Linear Colliders

ILC:

- should use technology of classical super-conducting RF cavities
- average electrical field gradient for $\sqrt{s} = 500 \text{ GeV}$ is 31.5 MV/m

- due to limitations of RF cavities:
- \Rightarrow two beam acceleration
 - low energy/high intensity beam \rightarrow

ILC:

- should use technology of classical super-conducting RF cavities
- average electrical field gradient for $\sqrt{s} = 500 \text{ GeV}$ is 31.5 MV/m

- due to limitations of RF cavities:
- \Rightarrow two beam acceleration
 - low energy/high intensity beam +
- \rightarrow high energy/low intensity beam

ILC anc CLIC beam spectra (BS)

International Large Detector (ILD)

- effort of ILC and CLIC collaboration overlap extensively
- CLIC uses modified ILC detectors
- despite classical onion design of the detector, new concepts are employed to meet the demands
 - highly granular calorimeters
 - high resolution tracker
- \Rightarrow excellent jet energy resolution

(The top quark)

Top quark properties

- lifetime: $\tau_{life} \sim 10^{-24}$ s
- hadronization time: $\tau_{had} \sim 10^{-23}$ s

.

The top quark

Top quark properties

• lifetime: $\tau_{life} \sim 10^{-24}$ s

۸

- hadronization time: $\tau_{had} \sim 10^{-23} \text{ s}$
- \Rightarrow decays before hadronization

⇒ top mass can be measured directly by reconstructing decay products' invariant mass

The top quark

Top quark properties

• lifetime: $\tau_{life} \sim 10^{-24}$ s

۸

- hadronization time: $\tau_{had} \sim 10^{-23} \text{ s}$
- \Rightarrow decays before hadronization

⇒ top mass can be measured directly by reconstructing decay products' invariant mass

The top quark

Top decay products

- b quark creates always a b-jet
- ⇒ event signature is entirely given the W boson decay:

Hadron colliders:

- one and two-lepton final states are used

Lepton colliders:

- tt pairs easy to identify
- concentrate on large branching fractions
- Iow missing energy

W decays used for reconstruction

- 4-jet final state (BR = 45%)
- identified by isolated lepton and b-jet

- 6-jet final state (BR = 46%)
- identified by *b*-jet and reconstructed jet energy originating from *W* decay

Top quark mass definitions

• pole mass

- defined as the pole of the renormalized quark propagator for $p \rightarrow M$ ("rest mass")
- has an internal ambiguity $\sim \Lambda_{\text{QCD}}$
- usage at low energies is not completely correct

Top quark mass definitions

• pole mass

- defined as the pole of the renormalized quark propagator for $p \rightarrow M$ ("rest mass")
- has an internal ambiguity $\sim \Lambda_{\text{QCD}}$
- usage at low energies is not completely correct

$\bullet \ \overline{\rm MS} \ \text{mass}$

- obtained from "Minimal Subtraction" renormalization scheme
- fits for calculations with energetic quarks

Top quark mass definitions

• pole mass

- defined as the pole of the renormalized quark propagator for $p \rightarrow M$ ("rest mass")
- has an internal ambiguity $\sim \Lambda_{\text{QCD}}$
- · usage at low energies is not completely correct

• MS mass

- obtained from "Minimal Subtraction" renormalization scheme
- fits for calculations with energetic quarks

1S mass

- defined as half of the mass of fictitious ³S₁ toponium ground state for a stable quark
- position of the total *t* production cross section peak remains stable if expressed in terms of 1*S* mass

Top quark reconstruction

- top quark decays $(t \rightarrow Wb)$ before it hadronizes
- \Rightarrow its mass can be determined directly from its decay products
 - $W \rightarrow 2$ jets or jet + lepton
 - $b \rightarrow jet$

Measurement of the Top Mass in a Threshold Scan at Linear Colliders

Top quark reconstruction

- top quark decays $(t \rightarrow Wb)$ before it hadronizes
- \Rightarrow its mass can be determined directly from its decay products
 - $W \rightarrow 2$ jets or jet + lepton
 - $b \rightarrow jet$

Hadron accelerators

- experiments must deal with high QCD background
- \Rightarrow usually, final states with one or two leptons are used for the analyses
- \Rightarrow missing energy taken out by neutrino
- \Rightarrow lower total branching fraction \rightarrow lower integrated luminosity

Top quark measurement at linear lepton colliders

- lepton collider experimental conditions are favorable for the top mass measurement
 - low background compared to hadron colliders
 - better defined initial state of the collision
- thanks to low background at e⁺e⁻ accelerators, so called "particle flow" algorithms can be employed
- \Rightarrow high jet energy resolution

Top quark measurement at linear lepton colliders

- lepton collider experimental conditions are favorable for the top mass measurement
 - low background compared to hadron colliders
 - better defined initial state of the collision
- thanks to low background at e⁺e⁻ accelerators, so called "particle flow" algorithms can be employed
- \Rightarrow high jet energy resolution

Two top mass measurement alternatives:

- invariant mass reconstruction
- threshold scan

Top mass measurement alternatives

- top mass is not unambiguously defined
- ⇒ cross-check of several measurement methods needed

Invariant mass reconstruction

- + experimentally well defined
- + can be conducted at any above-threshold energy
- + high integrated luminosity
- cannot determine which top mass was measured

Top mass measurement alternatives

- top mass is not unambiguously defined
- ⇒ cross-check of several measurement methods needed

Invariant mass reconstruction

- + experimentally well defined
- + can be conducted at any above-threshold energy
- + high integrated luminosity
- cannot determine which top mass was measured

Threshold scan:

- + theoretically well understood
- + potential of simultaneous measurement of correlated quantities
- + together with known top invariant mass can shed light on top mass definitions
- needs a dedicated accelerator run (Higgs measurements also possible)

13/26

Principle of the threshold scan template fit

 top quark production cross-sections are "measured" around the expected tt pair creation threshold

14/26

Measurement of the Top Mass in a Threshold Scan at Linear Colliders

Principle of the threshold scan template fit

- top quark production cross-sections are "measured" around the expected tt pair creation threshold
- in parallel, many of these dependencies are simulated with different parameter values (*m_t*, *α_s*, ...)
- \Rightarrow fit template

14/26

Principle of the threshold scan template fit

- top quark production cross-sections are "measured" around the expected tt pair creation threshold
- in parallel, many of these dependencies are simulated with different parameter values (*m_t*, *α_s*, ...)
- \Rightarrow fit template
 - the "measured" data points are fitted with the templates
 - top mass and α_s are extracted from the fits

14/26

Simulation procedure scheme

Measurement of the Top Mass in a Threshold Scan at Linear Colliders

Top mass reconstruction: signal and background at $\sqrt{s} = 350$ GeV

- signal and background events were simulated
- highly optimized top reconstruction has been conducted (by Katja Seidel)

process type	$e^+e^- ightarrow$	cross-section* σ (fb)
signal	tī	400
background	WW	11400
background	ZZ	673
background	WWZ	10
background	qą	24500

 cross-sections corrected for Initial State Radiation (ISR) and beam spectrum

Top mass reconstruction: signal and background at $\sqrt{s} = 350$ GeV

- signal and background events were simulated
- highly optimized top reconstruction has been conducted (by Katja Seidel)
- ⇒ resulting top reconstruction- and background rejection efficiencies were used for further simulation

process type	$e^+e^- ightarrow$	cross-section* σ (fb)
signal	tī	400
background	WW	11400
background	ZZ	673
background	WWZ	10
background	qą	24500

 cross-sections corrected for Initial State Radiation (ISR) and beam spectrum

Simulation procedure scheme

Measurement of the Top Mass in a Threshold Scan at Linear Colliders

$t\bar{t}$ production cross-section generator

- theory based next-to-next-to-leading order (NNLO) calculation ("TOPPIK" by Hoang & Teubner, Phys.Rev.D60:114027,1999)
- input parameters: top mass, top Width, strong coupling constant, Higgs mass, Yukawa coupling, (LO, NLO, NNLO)
- production channel: $e^+e^- \rightarrow Z^*/\gamma^* \rightarrow t\bar{t}$

Measurement of the Top Mass in a Threshold Scan at Linear Colliders

Simulation procedure scheme

Measurement of the Top Mass in a Threshold Scan at Linear Colliders

Effects of ISR and BS on cross-section shape

to get $t\bar{t}$ production cross-section at a e^+e^- collider, two effects have to be taken into account

- Initial State Radiation (ISR)
- Beam Spectra (BS)

these two distributions are folded with pure physical cross-section

Measurement of the Top Mass in a Threshold Scan at Linear Colliders

Simulation procedure scheme

Measurement of the Top Mass in a Threshold Scan at Linear Colliders

 $\chi^{2} = \sum^{Nbins} \left(\frac{\sigma_{n}^{meas} - \sigma_{n}^{template}}{\Gamma_{n}^{meas}} \right)^{2}$

Template χ^2 fit

 $\sigma_n^{meas} \dots \\ \sigma_n^{template} \dots \\ \Gamma_n^{meas} \dots$

measured cross-section

simulated cross-section

measured cross-section uncertainty in *n*-th energy bin

 $\sigma_n^{meas} \dots \\ \sigma_n^{template} \dots \\ \Gamma_n^{meas} \dots$

measured cross-section

simulated cross-section

measured cross-section uncertainty in *n*-th energy bin

 $\chi^{2} = \sum_{n=1}^{\text{Nbins}} \left(\frac{\sigma_{n}^{\text{meas}} - \sigma_{n}^{\text{template}}}{\Gamma_{n}^{\text{meas}}} \right)^{2}$

Measurement of the Top Mass in a Threshold Scan at Linear Colliders

 $\sigma_n^{meas} \dots \\ \sigma_n^{template} \dots \\ \Gamma_n^{meas} \dots$

measured cross-section

simulated cross-section

measured cross-section uncertainty in *n*-th energy bin

 $\chi^{2} = \sum_{n=1}^{Nbins} \left(\frac{\sigma_{n}^{meas} - \sigma_{n}^{template}}{\Gamma_{n}^{meas}} \right)^{2}$

Measurement of the Top Mass in a Threshold Scan at Linear Colliders

omeas							
tomple	oto						
σ_n^{iemple}	ale						
r meas							
n	• •	·	•	•	•	•	

measured cross-section

simulated cross-section

measured cross-section uncertainty in *n*-th energy bin

 $\chi^{2} = \sum_{n=1}^{Nbins} \left(\frac{\sigma_{n}^{meas} - \sigma_{n}^{template}}{\Gamma^{meas}} \right)^{2}$

Ap. Ag > 1 t

otemplate Γ_n^{meas}

 σ_n^{meas} measured cross-section simulated cross-section measured cross-section uncertainty in *n*-th energy bin

σ_n^{meas}			 	
σ_n^{templa}	ate	•	 	
Γ_n^{meas}		•	 	

measured cross-section simulated cross-section $\chi^2 = \frac{1}{2}$ measured cross-section uncertainty

in *n*-th energy bin

⇒ statistical uncertainty

Measurement of the Top Mass in a Threshold Scan at Linear Colliders

Recent hadron collider uncertainties of the top mass

CDF, Tevatron

$$\delta m_t^{(inv)} = 510_{(stat.)} \oplus 710_{(syst.)} \text{ MeV}$$

$$\Rightarrow \delta m_t^{(\overline{\text{MS}})} = O(1) \text{ GeV}$$

Recent hadron collider uncertainties of the top mass

CDF, Tevatron

$$\delta m_t^{(inv)} = 510_{(\text{stat.})} \oplus 710_{(\text{syst.})} \text{MeV}$$

$$\Rightarrow \delta m_t^{(\overline{\text{MS}})} = O(1) \text{ GeV}$$

CMS, LHC

$$\delta m_t^{(inv)} = 380_{(stat.)} \oplus 910_{(syst.)} \,\mathrm{MeV}$$

$$\Rightarrow \delta m_t^{(\overline{\text{MS}})} = O(1) \text{ GeV}$$

Measurement of the Top Mass in a Threshold Scan at Linear Colliders

CLIC threshold scan uncertainties

1D fit result (external input: $\delta \alpha_s = 0.0007$, $\alpha_s = 0.1180$)

$$\delta m_t^{(1S)} = 21_{(\text{stat.})} \pm 6_{(\text{thr. syst.})} \pm 11_{(\text{bkg. syst.})} \pm 21_{(\alpha_s \text{ syst.})} \text{ MeV}$$
$$\delta m_t^{(1S)} = 21_{(\text{stat.})} \oplus 43_{(\text{syst.})} \text{ MeV}$$
$$\Rightarrow \delta m_t^{(\overline{\text{MS}})} = 100 \text{ MeV}$$

Measurement of the Top Mass in a Threshold Scan at Linear Colliders

CLIC threshold scan uncertainties

1D fit result (external input: $\delta \alpha_s = 0.0007$, $\alpha_s = 0.1180$)

$$\delta m_t^{(1S)} = 21_{(\text{stat.})} \pm 6_{(\text{thr. syst.})} \pm 11_{(\text{bkg. syst.})} \pm 21_{(\alpha_s \text{ syst.})} \text{ MeV}$$
$$\delta m_t^{(1S)} = 21_{(\text{stat.})} \oplus 43_{(\text{syst.})} \text{ MeV}$$
$$\Rightarrow \delta m_t^{(\overline{\text{MS}})} = 100 \text{ MeV}$$

2D fit result (from fit: $\delta \alpha_s = 0.0015$ **)**

$$\delta m_t^{(1S)} = 33_{(\text{stat.})} \pm 6_{(\text{thr. syst.})} \pm 16_{(\text{bkg. syst.})} \text{ MeV}$$

$$\delta m_t^{(1S)} = 33_{(\text{stat.})} \oplus 17_{(\text{syst.})} \,\text{MeV}$$

$$\Rightarrow \delta m_t^{(\overline{\mathrm{MS}})} = 142 \,\mathrm{MeV}$$

.

Conclusions

- Top threshold scan in feasible at the CLIC
- mt statistical uncertainty for the ILC is by 22 % lower
- precise knowledge of the beam spectrum is more important than a narrow distribution
- \Rightarrow CLIC beam spectrum is good enough

Conclusions

- Top threshold scan in feasible at the CLIC
- mt statistical uncertainty for the ILC is by 22 % lower
- precise knowledge of the beam spectrum is more important than a narrow distribution
- \Rightarrow CLIC beam spectrum is good enough

Further performed studies:

- sensitivity to top width, Yukawa coupling and Higgs mass is not high enough
- 1 σ luminosity-spectrum-induced systematic uncertainty of the top mass is $\approx 6 \, MeV$

Summary

Future e^+e^- colliders:

- linear accelerators with \sqrt{s} of 500 to 3000 GeV (ILC, CLIC)
- equipped with highly precise tracking systems and highly granular calorimeters to reach excellent jet-energy resolution
- offer clean experimental environment for precise measurement of the top quark mass

Summary

Future e^+e^- colliders:

- linear accelerators with \sqrt{s} of 500 to 3000 GeV (ILC, CLIC)
- equipped with highly precise tracking systems and highly granular calorimeters to reach excellent jet-energy resolution
- offer clean experimental environment for precise measurement of the top quark mass

Top threshold scan:

- $t\bar{t}$ pair production cross section measured around production threshold
- top quark mass can be extracted from that curve
- simulation for the CLIC and ILC has been completed
- top quark mass and strong coupling constant α_s can obtained with a help of the template fit technique
- statistical and systematical uncertainties detrmined