Inside ATLAS search: an analysis example A short guide to read results

Alessandro Manfredini

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut) *PPSM colloquia* 15-11-2013

What does it mean?

Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC

"[...] Hypothesised values of μ are tested with a statistic $\lambda(\mu)$ based on the profile likelihood ratio. This test statistic extracts the information on the signal strength from a full likelihood fit to the data. The likelihood function includes all the parameters that describe the systematic uncertainties and their correlations.

Exclusion limits are based on the CLs prescription. [...] The significance of an excess in the data is first quantified with the local p0..."

Overview

- Small review of statistic tools
- Limits settings and significance test
- Result interpretation

Some definitions

- Given an observable X distributed with p.d.f, $f(x,\theta)$
- Suppose a counting experiment: the p.d.f of N measure of $X \rightarrow D\{x_{p}, \dots, x_{n}\}$ is a marked Poisson.
- DEF: Likelihood is the p.d.f calculated for the observations $L(D, v, \theta) = Pois(n|v) \prod_{i=1}^{N} f(\theta | x_i)$
- One can determine the most likely θ or υ by maximizing $L(D, \upsilon, \theta) \rightarrow$ maximum likelihood estimator \rightarrow profiling

Some definitions

- Signal strength for Higgs search $\mu = \sigma / \sigma_{_{SM}}$
- In case of signal one would expect to see:

 $v = \mu s + b$

- s = expectation for SM signal
- **b** = expectation for background
- $\mu = 1 \rightarrow SM$ signal ; $\mu = 0 \rightarrow$ background only

 $L(D, \upsilon(\mu), \theta) = Pois(n|\upsilon) \prod_{i=1}^{N} f(\theta | x_i)$

Hypothesis testing: modern approach

- $H_0 =$ null Hypo. \rightarrow describes known process
- H_1 = alternative Hypo. \rightarrow includes s+b
- Neuman and Person defined some rules to test H_1 against H_0 :
 - Define Test statistic $T(D) \rightarrow R$
 - if $T(D) < t_{\alpha}$ the null Hypo. is accepted and vice versa
 - Define size α : $P(T(D) > t_{\alpha} | H_{0}) \rightarrow Type I error$
 - Define $\beta = P(T(D) < t_{\alpha} | H_{\beta}) \rightarrow Type II error$

Hypo. test: best test statistic

- Lemma: best test statistic for counting experiment is the likelihood ratio \rightarrow Q = L(s+b, θ) / L(b, θ)
- Remember: L is the pdf fixed with the dataset D

Do you remember?

Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC

"[...] Hypothesised values of μ are tested with a statistic $\lambda(\mu)$ based on the profile likelihood ratio. This test statistic extracts the information on the signal strength from a full likelihood fit to the data. The likelihood function includes all the parameters that describe the systematic uncertainties and their correlations.

Exclusion limits are based on the CLs prescription. [...] The significance of an excess in the data is first quantified with the local p0, the probability that the background can produce a fluctuation greater than or equal to the excess observed in data. "

Test statistic for LHC:

$$\tilde{q}_{\mu} = -2 \ln \frac{\mathcal{L}(\text{data}|\mu, \hat{\theta}_{\mu})}{\mathcal{L}(\text{data}|\hat{\mu}, \hat{\theta})}, \quad \text{with a constraint } 0 \le \hat{\mu} \le \mu$$
(5)

where $\hat{\theta}_{\mu}$ refers to the conditional maximum likelihood estimators of θ , given the signal strength parameter μ and "data" that, as before, may refer to the actual experimental observation or pseudo-data (toys). The pair of parameter estimators $\hat{\mu}$ and $\hat{\theta}$ correspond to the global maximum of the likelihood.

• $0 < q_{\mu} < \infty$

- To asses limits you should know the distro of q_{μ}
- This allow to make asymptotic extrapolations

P-value: significance

- Given an observable X distributed with pdf f(x) you can evaluate the significance of outcome of an experiment for hypo. H
- p-value = Prob. of obtaining the value observed plus all more extreme outcome under H.

$$p_{\mu} = P(\tilde{q}_{\mu} \ge \tilde{q}_{\mu}^{obs} | \text{signal+background}) = \int_{\tilde{q}_{\mu}^{obs}}^{\infty} f(\tilde{q}_{\mu} | \mu, \hat{\theta}_{\mu}^{obs}) d\tilde{q}_{\mu}$$

Limits

• The confidence in the S+B Hypo. is given by the probability that the test statistic is > of Observed.

$$\mathbf{CL}_{\mathbf{S}+\mathbf{B}} \equiv p_{\mu} = P(\tilde{q}_{\mu} \ge \tilde{q}_{\mu}^{obs} | \text{signal+background}) = \int_{\tilde{q}_{\mu}^{obs}}^{\infty} f(\tilde{q}_{\mu} | \mu, \hat{\theta}_{\mu}^{obs}) d\tilde{q}_{\mu}$$

- If $CL_{S+B} < 5\%$ the signal is excluded at 95% Confidence Level
- Problem: if down-fluctuation you can exclude an arbitrarily small signal → not desired!

Limits: the CL_s method

$$\begin{aligned} \mathbf{CL}_{\mathbf{S}+\mathbf{B}} &= p_{\mu} = P(\tilde{q}_{\mu} \geq \tilde{q}_{\mu}^{obs} | \text{signal+background}) = \int_{\tilde{q}_{\mu}^{obs}}^{\infty} f(\tilde{q}_{\mu} | \mu, \hat{\theta}_{\mu}^{obs}) d\tilde{q}_{\mu} \\ \mathbf{CL}_{\mathbf{B}} &= 1 - p_{b} = P(\tilde{q}_{\mu} \geq \tilde{q}_{\mu}^{obs} | \text{background-only}) = \int_{q_{0}^{obs}}^{\infty} f(\tilde{q}_{\mu} | 0, \hat{\theta}_{0}^{obs}) d\tilde{q}_{\mu} \\ \mathbf{CL}_{\mathbf{S}} &= \mathbf{CL}_{\mathbf{S}+\mathbf{B}} / \mathbf{CL}_{\mathbf{B}} \end{aligned}$$

- - -

You can't exclude a signal if you are not sensitive to it \rightarrow CL = 1- CL_s

Fig. Combined search results:

(a) The observed (solid) 95% CL limits on the signal strength as a function of mH and the expectation (dashed) under the background-only hypothesis. The dark and light shaded bands show the $\pm 1\sigma$ and $\pm 2\sigma$ uncertainties on the background-only expectation.

(b) The observed (solid) local p0 as a function of mH and the expectation (dashed) for a SM Higgs boson signal hypothesis ($\mu = 1$) at the given mass.

(c) The best-fit signal strength View the MathML source as a function of mH. The band indicates the approximate 68% CL interval around the fitted value.

Definition of P₀

• In case of discovery important parameter is Significance of H₀

$$\mathbf{p}_{\mathbf{0}} \approx \mathbf{C} \mathbf{L}_{\mathbf{B}} \equiv P(\tilde{q}_{\mu} \geq \tilde{q}_{\mu}^{obs} | \text{background-only}) = \int_{q_{0}^{obs}}^{\infty} f(\tilde{q}_{\mu} | \mathbf{0}, \hat{\theta}_{0}^{obs}) d\tilde{q}_{\mu}$$

• For a significance against H_0 of 5σ you need $p_0 = 2.87 \ 10^{-7}$

p-value of discovery

The observed (solid) local p0 as a function of mH in the low mass range. The (dashed) curve shows the expected local p0 under the hypothesis of a SM Higgs boson signal at that mass with its $\pm 1\sigma$ band. The horizontal dashed lines indicate the p-values corresponding to significances of 1 to 6 σ .

Let's wait for new exciting p-values then!!

THANKS!