A/E PSD for the GERDA experiment

Outline:

- Neutrinoless double beta decay
 The GERDA experiment
- Introduction to some GERDA Backgrounds
- PSD for GERDA Phase-I BEGes
- > Outlook & Summary

Heng-Ye Liao

for the GERDA collaboration Max-Planck-Institut für Physik IMPRS @ Föhringer Ring 6, Munich, 17/01/2014

Neutrinoless Double Beta Decay

$$(A,Z) \qquad \beta^{-} (A,Z+1) \\ \beta\beta \\ (A,Z+2)$$

stop 2νββ 0νββ(Sum of 2 e⁻ energy)/Q_{ββ}

- Single β decay is not allowed for some isotopes, only ββ decay
- **2** $\nu\beta\beta$ decay: (A,Z) \rightarrow (A,Z+2) +2e⁻+2 $\overline{\nu}$ SM allowed & observed

• $\mathbf{0}_{\nu\beta\beta}$ decay: $(\nu=\overline{\nu})$ $(\mathbf{A},\mathbf{Z}) \rightarrow (\mathbf{A},\mathbf{Z}+2) + 2e^{-1}$ if ν is Majorana particle

Study of $\mathbf{0}\nu\beta\beta$ can:

- Discover lepton number violation
- Determine nature of v (Majorana or Dirac)
- Give information on absolute v mass
 → Mass hierarchy of v

Neutrinoless Double Beta Decay

- Single β decay is not allowed for some isotopes, only ββ decay
- 2vββ decay:
 ⁷⁶Ge → ⁷⁶Se+2e⁻+2√
 SM allowed & observed
- **0**_νββ decay: (ν=ν̄) ⁷⁶Ge → ⁷⁶Se+2e⁻ if ν is Majorana particle

- ⇒ Use detector made of ββ emitting material: HP ⁷⁶Ge detector
- ⇒ Experimental signature: (1) A sharp peak at 2.039 MeV (2) Single Site Events

Experimental Observable of 0vßß Decay

- Experiments always have backgrounds that can mimic the signal
- To avoid backgrounds:
 - Compact shielding design
 - Radio pure materials close to the detector Typical activities ~ µBq/kg
 - → careful choice of materials + screening tests
 + Minimizing the support structure
 - Go underground to reduce cosmic backgrounds (cosmogenic activation on detector materials, muons)
- Establish techniques able to distinguish signals from backgrounds
 - → Use intelligent detectors

Experimental Challenges

- Experiments always have backgrounds that can mimic the signal
- To avoid backgrounds:

 Compact shielding design
 Radio pure materials close to the warning:
 Typical activities ~ µBq/kg 40K ~ 10⁻² Bq/kg
 → careful choice of materials + screening tests
 + Minimizing the support structure
 Go underground to reduce cosmic backgrounds
 (cosmogenic activation on detector materials,
 muons)
- Establish techniques able to distinguish signals from backgrounds
 - → Use intelligent detectors

Experimental Challenges

- Establish techniques able to distinguish signals from backgrounds
 - → Use intelligent detectors

Experimental Challenges

There are ~ 35 candidates in nature, however ...

⁷⁶Ge diode

11x natGe diodes

• Previous results for ⁷⁶Ge 0vββ decay:

- limit: $T_{1/2}^{0\nu\beta\beta} > 1.9 \cdot 10^{25} yr$ @ 90% C.L. from HDM and IGEX [EPJ. A12 (2001)147-154]
- claim: $T_{1/2}^{0\nu\beta\beta} > 1.2 \cdot 10^{25} yr$ Klapdor-Kleingrothaus et al., [PL B586 (2004) 198]

• Phase-I:

- Data taking: Nov. 2011 to Jun 2013, exposure: 21.6 kg·yr
- Detector:
 - 8 enrcoax detectors(17.7 kg) from HDM & IGEX
 - 5 enrBEGe Phase-II detectors (3.6 kg) (started in May 2012)
 - 1 non-enriched coaxial detector (3.0 kg)
- BI: ~10⁻² Cts/(keV·kg·yr)
- **Physics result:** $T_{1/2}^{0\nu\beta\beta} > 2.1 \cdot 10^{25} yr$ @ 90%C.L. [PRL 111 (2013) 122503] $T_{1/2}^{0\nu\beta\beta} > 3.0 \cdot 10^{25} yr$ in combine with HDM & IGEX results
- Phase-I successfully completed, Klapdor claim strongly disfavored

• Phase-II:

- Detector: +20 kg enrBEGe detectors
- Design goal: BI=10⁻³ Cts/(keV·kg·yr) + exposure: 100 kg·yr
- Expected sensitivity: ~10²⁶ yr

GERDA Phase-I BEGe Detectors

- Broad Energy Germanium Detectors
- Advantages of BEGe detectors:
 ✓Low capacity → low noise
 ✓Very good energy resolution
 @ 2.6 MeV:
 ΔE_{coaxial} ~ 4.5 keV
 ΔE_{BEGe} ~ 3 keV
 - ✓Powerful PSD to reject backgrounds: → A/E parameter
- Total exposure for BEGe detectors:
 2.4 kg·yr

Pulse Shape Properties of BEGes

- h+s are collected toward the readout electrode in the same path
- Different interaction positions

Pulse Shape Properties of BEGes

Different interaction positions

Pulse Shape Properties of BEGes

⁴²K Background in GERDA

- ⁴²Ar: Isotope of Ar created by cosmic-ray activation
- Decay chain: ${}^{42}\text{Ar} \rightarrow {}^{42}\text{K} \rightarrow {}^{42}\text{Ca}$ $\xrightarrow{0^+ 32.9 \text{ y}}{\frac{42}{18}\text{Ar}} \xrightarrow{2^- 12.360 \text{ h}}{\frac{42}{42}\text{K}}$

 $Q_{g_{-}}600$

- ⁴²K ions get attracted by detector HV
- GERDA Phase I approach:
 Installation of mini-shroud
 Keep ione purply from dates
 - → Keep ions away from detectors

a-induced events in GERDA

- Range of a particles(4MeV-9MeV): 34 µm - 113 µm in Lar 14 µm - 41 µm in Ge
- Thickness of surface is different for p⁺ & n⁺ contacts.

p⁺(B) < 1 μm n⁺(Li) ~ 2 mm for coax n⁺(Li) ~ 1 mm for BEGe

a contributes to bkg. only when the decays on the p+ surface or in LAr very close (<100 µm) to p+ surface

Ra-226 ($E_a = 4.8$ MeV, $T_{1/2} = 1600 \text{ y}$ Rn-222 ($E_a = 5.5$ MeV, $T_{1/2} = 3.8 \text{ d}$ **Po-218** ($E_a = 6.0$ MeV, $T_{1/2} = 183 \text{ s}$ Pb-214 ($T_{1/2} = 0.45 h$) Bi-214 ($T_{1/2} = 0.33$ h) **Po-214** ($E_a = 7.7$ MeV, $T_{1/2} = 164 \ \mu s$ **Pb-210** ($T_{1/2} = 22.3$ y) Bi-210 ($T_{1/2} = 5.01 \text{ d}$) Po-210 ($E_a = 5.3$ MeV, $T_{1/2} = 138.4 \text{ d}$ Pb-206 (stable) 20

Energy spectra

A/E Pulse Shape Discrimination Method

BEGe Pulse Shape Discrimination

BEGe PSD:

- Use A/E parameter
- Develop PSD method with ²²⁸Th calibration data apply it on physics data
- Double Escape Peak events from 2.6 MeV Υ of
 ²²⁸Th spectrum are SSEs Proxy of 0vββ

Event topology

BEGe Pulse Shape Discrimination

BEGe PSD:

- Use A/E parameter
- Develop PSD method with ²²⁸Th calibration data apply it on physics data
- Double Escape Peak events from 2.6 MeV Υ of
 ²²⁸Th spectrum are SSEs Proxy of 0vββ

A/E Modeling : Distributions

A/E PSD: Time Dependence Correction

A/E PSD:

- Sensitive to A performance
- Calibration using ²²⁸Th external source for every one/two weeks
 Monitor PSD stability over time
- Optimization of PSD/Global PSD cut:
 Normalization schemes are investigated

A/E PSD: Energy Dependence Normalization

Energy dependence corr. A/E w.r.t DEP peak norm.

Global PSD for the GERDA Phase-I BEGe

PSD for the GERDA Phase-I BEGe

A/E: Background

Global PSD for the GERDA Phase-I

Global PSD for the GERDA Phase-I

Outlook & Summary

- Physics result for GERDA phase I: $T_{1/2}^{0\nu\beta\beta} > 2.1 \cdot 10^{25} yr$ @ 90% C.L.
- A/E PSD of BEGes demonstrates powerful SSE/MSE pulse shape recognition efficiency
- Physics result for GERDA phase I BEGes: 0/1 event after/before PSD cut with 92% efficiency
- GERDA phase I successfully completed
 & decommissioned
- GERDA phase II will go beyond: Increase total detector mass & lower background index