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Neutrinoless Double Beta Decay 

 Single β decay is not allowed for 
some isotopes, only  decay 

 2 decay:  
    (A,Z)  (A,Z+2) +2e-+2 

    SM allowed & observed  
       

 0 decay: (=) 
    (A,Z)  (A,Z+2) +2e- 
    if  is Majorana particle 
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(A,Z) 

(A,Z+2) 

(A,Z+1) - 

 

(Sum of 2 e- energy)/Q 

Study of 0 can: 

 Discover lepton number violation 

 Determine nature of   
   (Majorana or Dirac) 

 Give information on absolute  mass 
        Mass hierarchy of  
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Neutrinoless Double Beta Decay 

 Single β decay is not allowed for 
some isotopes, only  decay 

 2 decay:  
    76Ge  76Se+2e-+2 

    SM allowed & observed  
       

 0 decay: (=) 
    76Ge  76Se+2e- 
    if  is Majorana particle 
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 Use detector made of ββ  
    emitting material: 
    HP 76Ge detector 
 
 Experimental signature: 
   (1) A sharp peak at 2.039 MeV 
   (2) Single Site Events 

Branching ratio of  
2vbb/0vbb ~? 

76Ge 

76Se 

76As - 

 

JJ: This process exists due to 
nuclear pairing interaction that 
favors energetically the eveneven 
isobars over the odd-odd 
ones. 
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energetically forbidden 
2nd order weak process (longer half-life) 

Searching for: 
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Experimental Observable of 0νββ Decay 

nuclear transition  
matrix element 

0νββ  
Decay rate 

phase space 
integral 

Effective Majorana  
ν mass 

Measure quantity : 
Half-life of 0νββ  

Parameter contains 
physics 

One measurement, lots of information 
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Experimental Challenges 

 Experiments always have backgrounds that can mimic 
the signal 

 
 To avoid backgrounds: 

 Compact shielding design 
 Radio pure materials close to the detector 

         Typical activities ~ μBq/kg 
               careful choice of materials + screening tests 
               + Minimizing the support structure 

 Go underground to reduce cosmic backgrounds 
         (cosmogenic activation on detector materials, 
          muons) 
 
 Establish techniques able to distinguish signals  
    from backgrounds 
           Use intelligent detectors                           

p.s. 40K from Banana ~ 10-2 
Bq/kg 
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Experimental Challenges 

 Experiments always have backgrounds that can mimic 
the signal 

 
 To avoid backgrounds: 

 Compact shielding design 
 Radio pure materials close to the detector 

         Typical activities ~ μBq/kg 
               careful choice of materials + screening tests 
               + Minimizing the support structure 

 Go underground to reduce cosmic backgrounds 
         (cosmogenic activation on detector materials, 
          muons) 
 
 Establish techniques able to distinguish signals  
    from backgrounds 
           Use intelligent detectors                           

 40K ~ 10-2 Bq/kg 

Warning: 
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Experimental Challenges 

 Experiments always have backgrounds that can mimic 
the signal 

 
 To avoid backgrounds: 

 Compact shielding design 
 Radio pure materials close to the detector 

         Typical activities ~ μBq/kg 
               careful choice of materials + screening tests 
               + Minimizing the support structure 

 Go underground to reduce cosmic backgrounds 
         (cosmogenic activation on detector materials, 
          muons) 
 
 Establish techniques able to distinguish signals  
    from backgrounds 
           Use intelligent detectors                           

p.s. 40K from Banana ~ 10-2 
Bq/kg 

Commerical Ge detector 
GERDA  

Ge detector 
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Experimental Challenges 

 Sensitivity of  

 High detection efficiency 

 Very good energy resolution (~0.2% in ROI) 

 Intrinsically pure  

β 
β 

(source=detector) 

     : mass (not easy to scale up) 

There are ~ 35 candidates in nature, however …  

 Why HP 76Ge detector ?  

detection eff. enrichment fraction 

background index 
(Cts/day∙kg∙keV) 

energy resolution 

MT: exposure 

(kg∙yr) 

 Why enrichment ?  

 1 76Ge diode 

= 

11x natGe diodes 

1    2    3    4    5    6    7    8    9 10   11 
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The GERDA Experiment 

Figure from nature.com 

 GERmanium Detector Array 

 Search for 0νββ decay in 76Ge  

   @ Qββ=2.039 MeV 

 Location: Hall A, LNGS 

 Overburden: 3500 m.w.e 

Member institutions : 
   INFN LNGS, Jageillonian Univ. 
Cracow,  
   IKTP TU Dresden, JINR Dubna,  
   IRMM Geel, MPIK Heidelberg,  
   Univ. and INFN Milano and  
   Milano Bicocca, INR Moscow, 
ITEP  
   Moscow, NRC-KI Moscow,  
   MPP Mü nchen, TU Mü nchen, 
Univ. and  
   INFN Padova, Univ. Tü bingen,  
   Univ. Zü rich 
 
  16 institutions, ~100 members 
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The GERDA Experiment 

Why not use KK’s 2006 result? 
Because his result is NOT reproducable and  
The efficiency to calculate PSD is not correct. 
PSD has problem? 
Bayesian factor: 0.024 

 Previous results for 76Ge 0νββ decay: 

• limit:                            @ 90% C.L. from HDM and IGEX  
                                                       [EPJ. A12 (2001)147-154] 

• claim:                           Klapdor-Kleingrothaus et al.,  
                                       [PL B586 (2004) 198] 

 Phase-I:  
• Data taking: Nov. 2011 to Jun 2013, exposure: 21.6 kg∙yr 
• Detector:  
   8 enrcoax detectors(17.7 kg) from HDM & IGEX 
   5 enrBEGe Phase-II detectors (3.6 kg) (started in May 2012) 
   1 non-enriched coaxial detector (3.0 kg) 
• BI: ~10-2 Cts/(keV∙kg∙yr) 

• Physics result:                           @ 90%C.L. [PRL 111 (2013) 122503] 

                                                     in combine with HDM & IGEX results                          

• Phase-I successfully completed, Klapdor claim strongly disfavored 

 Phase-II:  
• Detector: +20 kg enrBEGe detectors 
• Design goal: BI=10-3 Cts/(keV∙kg∙yr) + exposure: 100 kg∙yr   
• Expected sensitivity: ~1026 yr       
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The GERDA Experiment 

Clean room 

Water tank(590 m3) 
with HP water 

and -veto 

Germanium 
Detector array 

Lock 
system 

Liquid Argon Cryostat 
(64 m3) 

3+1 string arms 
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The GERDA Experiment 

Clean room 

Water tank(590 m3) 
with HP water 

and -veto 

Germanium 
Detector array 

Lock 
system 

Liquid Argon Cryostat 
(64 m3) 

Cooling & shielding  
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The GERDA Experiment 

Clean room 

Germanium 
Detector array 

Lock 
system 

Liquid Argon Cryostat 
(64 m3) 

Cooling & shielding  

Water tank(590 m3) 
with HP water 

and -veto 

Absorb n’s & 

Veto μ’s 

Clean room 
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The GERDA Experiment 

Clean room 

Water tank(590 m3) 
with HP water 

and -veto 

Germanium 
Detector array 

Lock 
system 

Liquid Argon Cryostat 
(64 m3) 

Cooling & shielding  

Absorb n’s & 

Veto μ’s 

Clean room 

Germanium 
Detector array 

Φ=4m 

Inside water tank 

Φ=10m 

μ 

Čerenkov 



GERDA Phase-I BEGe Detectors  
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 Broad Energy Germanium Detectors 

 Advantages of BEGe detectors: 
Low capacity     low noise 
Very good energy resolution 

       @ 2.6 MeV: 
          ΔEcoaxial ~ 4.5 keV 
          ΔEBEGe ~ 3 keV 
 
Powerful PSD to reject backgrounds:  
         A/E parameter 

 Total exposure for BEGe detectors: 

  2.4 kg∙yr 

2
.5

-5
 c

m
 

6.5-8 cm 



n +(HV contact, 3-4 kV) 

p +(readout contact, 0V) 
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Pulse Shape Properties of BEGes 

Properties of E-field of BEGe: 
 h+s are collected toward  
   the readout electrode  
   in the same path 

     
 Different interaction positions 

  

Path 1 

Path 2 

Path 3 
 h+ 
 e- 



n +(HV contact, 3-4 kV) 

p +(readout contact, 0V) 
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Pulse Shape Properties of BEGes 

Properties of E-field of BEGe: 
 h+s are collected toward  
   the readout electrode  
   in the same path 

     
 Different interaction positions 

  

Path 1 

Path 2 

Path 3 
 h+ 
 e- 

  “Funneling effect” 



n +(HV contact, 3-4 kV) 

p +(readout contact, 0V) 
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Pulse Shape Properties of BEGes 

Properties of E-field of BEGe: 
 h+s are collected toward  
   the readout electrode  
   in the same path 

     
 Different interaction positions 

  

charge pulse 

Ramo-Shockley theorem: 
 

charge W. potential Charge Signal 

Timing 

Path 1 

Path 2 

Path 3 
 h+ 
 e- 

  “Funneling effect” 

the same pulse height 

Path 1 

Path 2 

Path 3 




42Ar: Isotope of Ar  

            created by cosmic-ray activation 
 

 Decay chain: 
     42Ar      42K      42Ca 
 
 
 
 
 
 


42K ions get attracted  
    by detector HV 
 
 GERDA Phase I approach: 
    Installation of mini-shroud 
          Keep ions away from detectors 19 

42K Background in GERDA 

mini-shroud 

Q- 3525.4 keV 
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 α-induced events in GERDA 

 Range of α particles(4MeV-9MeV): 
    34 μm - 113 μm in Lar 
    14 μm - 41 μm in Ge 
 
 Thickness of surface is different 
     for p+ & n+ contacts. 
 
    p+(B) < 1 μm 
    n+(Li) ~ 2 mm for coax 
    n+(Li) ~ 1 mm for BEGe 
 
     

 
   
 
  

α contributes to bkg.   
only when the decays on  
the p+ surface or in LAr 
very close (<100 μm) to p+ 
surface 
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Energy spectra 

J. Phys. G: 
Nucl. Part. Phys. 40 (2013) 035110 
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A/E Pulse Shape Discrimination Method 

 22 

n + 

p + 

SSE 
Signal-like 

MSE 
ϒ S 

0νββ  

MSE 

P+ surface 

n+ surface 

E A 

42K β 

210Po α 

GERDA  
BEGe Detector 

E 

A 

Charge should also saturate at 1.0. 
Point out that the integral of current is the 
same for SSE signal-like events. 



BEGe PSD: 
 Use A/E parameter 
Develop PSD method with 228Th calibration 

data         apply it on physics data 

Double Escape Peak events from 2.6 MeV ϒ of 
228Th spectrum are SSEs         Proxy of 0νββ 
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BEGe Pulse Shape Discrimination 

76Ge nucleus 

e- 

2νββ 
(localized energy deposition) 

Event topology 

e- 

DEP 
(signal-like event) 

e+ 

e- 

p.p 

annihilation 

76Ge nucleus 

2.6 MeV ϒ 

511 keV ϒ 

511 keV ϒ 

e- 



BEGe PSD: 
 Use A/E parameter 
Develop PSD method with 228Th calibration 

data         apply it on physics data 

Double Escape Peak events from 2.6 MeV ϒ of 
228Th spectrum are SSEs         Proxy of 0νββ 
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BEGe Pulse Shape Discrimination 

SSE 

MSE 

- Before PSD 
- After PSD 

DEP(0-like) 

1593keV 
> 90% survival 

FEP(MSE) 
1621 keV 

~10% survival 

A/E Distribution with 228Th source 
Energy spectrum 

 with 228Th  source  

PSD Cut 

Dušan Budjaš et al, JINST 4 P10007, 2009 

DEP FEP 
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A/E Modeling : Distributions 

A/E Distribution:  
 
Decompose to: 
   func. of SSE + MSE 
 SSE: Gaussian 
 
 
 
MSE: 

 
 
 

228Th calibration data 



Long term drift correction First 70 min correction 
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A/E PSD: Time Dependence Correction 

228Th calibration data 

 Sensitive to A performance 

 Calibration using 228Th external source for every one/two weeks 
           Monitor PSD stability over time  

 Optimization of PSD/Global PSD cut: 
          Normalization schemes are investigated 

A/E PSD: 

What’s the position difference  
of 2vbb and DEP? 
 
 

Point out that the plots show A/E for DEP of 
calibration measurement 



27 

A/E PSD: Energy Dependence Normalization  

Energy dependence corr. A/E w.r.t DEP peak norm. 
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Global PSD for the GERDA Phase-I BEGe 

Validity for PSD 
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PSD for the GERDA Phase-I BEGe 

p+ type events 

2νββ 

n+ type events 

=0.175 

α 

=0.028 

42K 

Proxy of 0νββ 

MSE 

42K 

ROI 

α 

SSE events 
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A/E: Background 

Point out that phase I PSD supports the 
assumption that most of the BEGe 
background is from 42K on n+ 



 BI in ROI :  
      Before/After PSD:   0.036/ 0.007 Cts/(kg∙yr∙keV) 
      Suppression factor: > 80% of bkg events       
      Signal efficiency: (92 ± 2) % 

Uncertainty including : 
 uncertainty from DEP 
 different topologies 

between DEP & 0vbb 
from simulation 

Global PSD for the GERDA Phase-I 
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Check the efficiency is 2% or not 
Bela:: NOT! 



 After unblinding:  

    0/1 event after/before PSD cut 

Uncertainty including : 
 uncertainty from DEP 
 different topologies 

between DEP & 0vbb 
from simulation 

Global PSD for the GERDA Phase-I 
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Check the efficiency is 2% or not 
Bela:: NOT! 



Physics result for GERDA phase I:  
                             @ 90% C.L.    

A/E PSD of BEGes demonstrates powerful  
  SSE/MSE pulse shape recognition efficiency 

Physics result for GERDA phase I BEGes:  
   0/1 event after/before PSD cut with 92% 
   efficiency 

GERDA phase I successfully completed  
   & decommissioned 

GERDA phase II will go beyond: 
   Increase total detector mass &  
   lower background index 

Outlook & Summary 
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 Physics result for GERDA phase I:  

 

 GERDA phase I successfully completed and 
decommissioned 

 A/E PSD for BEGes demonstrates powerful  

   SSE/MSE pulse shape recognition efficiency 

 Result of BEGe for phase I:  

    0/1 event after/before PSD  

  Physics result for phase I:                                  

                                                                @ 90% C.L.  
 GERDA phase II will go beyond:  
   Increased total detector mass &  
   lower background index 

 


