SM H→ττ Search in ATLAS: 2 analysis strategies Daniele Zanzi (MPP)

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

SM H $\rightarrow \tau \tau$ Search

Data

Ζ→ττ

Others

Fakes

Uncer

− $H(125) \rightarrow \tau\tau (\mu=1.4)$

180

m^{MMC}_{TT} [GeV]

200

160

March 2012

October 2012

- Cut-Based analysis
- ✤ 5 fb⁻¹
- Exclusion upper limits at $2.9 \times \sigma_{SM}$

- Cut-Based analysis
- ♦ 5+13 fb⁻¹

Events / 16 GeV

150

30

25

15

10

* Exclusion upper limits at $1.9 \times \sigma_{SM}$

τ_{had}τ_{had} H+2-jets VBF

Ζ→ττ

Multi-jet

5 x H(125)→ττ

Data

November 2013

- Multi-Variate analysis
- ✤ 20 fb⁻¹
- First evidence of Higgs decaying to fermions with 4.1 σ significance

Others 20 ////, Bkg. uncert. ∫ L dt = 13.0 fb⁻¹ √s = 8 TeV ATLAS Preliminary ᅇ 50 100 150 200 250 MMC mass m_{rt} [GeV] on σ/σ_{SM} - Observed $CL_s \int L dt = 4.6 \text{ fb}^{-1}$, $\sqrt{s} = 7 \text{ TeV}$ --- Expected $CL_{s} \int L dt = 13.0 \text{ fb}^{-1}$, $\sqrt{s} = 8 \text{ TeV}$ ± 20 95% CL Limit

D. .

100

110

120

130

Outline

- What's a Search?
- Analysis Strategies
- ♦ Case Study: SM $H \rightarrow \tau \tau$
- Strategy Comparison:
 - Sensitivity
 - Systematic Uncertainty (Theory, Experimental)
- Conclusions

What's a Search?

- Search for New Physics:
 - collect as many events as possible
 - define subsets of events which are likely to be signal, i.e. Signal Regions (SR)
 - estimate amount of background events in SR
 - look at observed data events in SR, estimate compatibility with "Bkg-only" or "Bkg+Signal" hypotheses (test statistic)
- Sensitivity driven by:
 - number of signal events
 - discrimination between signal and background events

Analysis Strategies

16/01/2014

D. Zanzi (MPP)

10⁻⁴ └── 80 100 120 140 160 180 200 H+0jet lle M_µ [GeV] 10² E [dq] (X+H ← √s= 8 TeV $Pp \rightarrow H (NNLO+NNLL QCD + NLO EW)$ <u>H+1jet</u> 10 - dd)o pp → qqH (NNLO QCD + NLO EW) mm H+2jet 10 10⁻²

140

160

180

M_H [GeV]

200

WW

★ Backgrounds: $Z \rightarrow \tau \tau$ (irreducible), fakes (reducible, i.e. QCD jets selected as leptons or τ_{had}), W+jets, top

◆ BR(H→ $\tau\tau$)=0.06, 3 final states: II+4v (12%), $I\tau_{had}$ +3v

Background rejection:

(46%), $\tau_{had}\tau_{had}$ +2v (42%)

- Online (trigger) and offline (object reconstruction, identification) \rightarrow Strong impact on signal event selection efficiency!
- Event selection targeting production modes with "tagging" features (ggF H+1j, VBF)
- Invariant mass reconstruction not possible, approximated estimate of neutrino energies \rightarrow low mass resolution (~15-20%)
- 2 strategies: Orthodox Cut-Based and Multi-Variate Analysis

D. Zanzi (MPP)

Case Study: SM $H \rightarrow \tau \tau$

Higgs BR + Total Uncert [%]

10

 $\overline{3}$

100

120

2 Strategies

7

VBF di-jets no Boosted Higgs no Rejected	Cut-Based	MVA	
	Two hard and well separated jets (p _T >50,30 GeV, Δ η(j,j)>2.0)		
	Cuts: ❖ ⊿η(j,j)>2.6 ❖ M(j,j)>350 GeV	MVA inputs:	
	Not accepted in VBF SR, Higgs p _T >100 GeV		
	Cuts: • Higgs $p_T > 140 \text{ GeV}$ • $\Delta R(\tau, \tau) < 2.0$	MVA inputs: ◆ ΔR(τ,τ), M(τ,τ) ◆ τ p⊤ ratio, Higgs p⊤ ◆	
	Fit of $M(\tau, \tau)$	Fit of MVA output	
	Strong background rejection, little signal, fit of a physics variable	Loose cuts, many signal events, discrimination by MVA	
16/01/2014	D. Zanzi (MPP)		

- Significance of signal excess:
 - Cut-Based: 2.3σ
 - MVA: 3.5σ
- Where does this difference comes from? Can we improve the Cut-Based sensitivity?
- MVA profits from:
 - Correlations among event variables, better signal-tobackground separation
 - Looser event selection, higher signal acceptance

Multiple Cut-Based

Multiple Cut-Based

Preselection Looser event selection and use of many categories based on tightness of background rejection

Comparison: Systematic Uncertainties

Kinematic Phase Space Fit (Experimental Systematics) (Theory Systematics) Well-defined categories * Fit of a physical variable, $M(\tau,\tau)$ Theory systematics: Impact of experimental systematic (e.g. **Multiple** easy to estimate via QCD scale energy scales) are predictable **Cut-Based** variations Excesses/mis-modelings can be easily impacts only on the expected signal spotted and understood yield Not well-define signal region, e.g. in VBF SR continuous transition from ggF+≥2jets to ggF+only 2jets Fit of a MVA score Possible enhancement of dangerous Impact of experimental systematic corners with poor theoretical predictions cannot be predicted, not trivial to Multi-Theory systematics: understand Variate no prescription available yet Signal excesses and background mis- impacts not only the signal yields but modelings more difficult to discriminate also the shape of the MVA score distribution

D. Zanzi (MPP)

Summary

	Analysis	Motivation
Counting Experiment	 SUSY searches 	 Very tight rejection of SM events Low statistics
"Orthodox" Cut-Based	* H→₩W * H →ττ (old)	 Strong impact of theory and experimental systematics
Multiple Cut-Based	* H→γγ * H→bb * H→ ττ (CMS)	 Multiple categories to separate classes of events with different signal/bkg ratio
Multi-Variate Cut-Based	♦ VBF H→γγ	 Strong background rejection Low signal yield
Multi-Variate	∗ H →ττ (new)	 Need for the best sensitivity to claim 3σ evidence

- Many possible strategies for searches
- Orthodox Cut-Based is too conservative
- Multi-Variate analyses give high sensitivities (best signalbackground discrimination)
- Result of Multi-Variate Analyses may be hard to understand (see theory and exp. systematics)
- Advanced Cut-Based analyses can get sensitivities similar to MVA, but with result easier to understand physics-wise

Analysis Strategies

	Signal Region	Statistical Model
Counting Experiment	 Subset defined by sequential cuts on events variables One SR per type of signal (eg SUSY benchmark models or Higgs production modes) Tight selection: high background rejection, low signal acceptance 	 Count of number of observed and expected events in each SR Simple and robust
"Orthodox" Cut-Based		
Multiple Cut-Based	 (Cut-Based)^N: multiple SRs per type of signal Potential use of correlations among event variables, higher signal acceptance 	 Fit of a discriminating variable (eg invariant mass) in each SR Result "easy" to interpret physics-wise (eg mass peak)
Multi-Variate Cut-Based	 Subset defined by the output of a MVA algorithm (BDT, Neural Net.,) Multiple event variables used as input for MVA Use of correlations among event variables, strong background rejection AND good signal acceptance 	
Multi-Variate		 Fit of the output of the MVA algorithm Best search sensitivity Result not easy to interpret