ϕ_1 Measurement at Belle

Veronika Chobanova veronika@mpp.mpg.de

February 14th, 2014 Max-Planck-Institut für Physik

<u>Outline</u>

Introduction to CP Violation

Belle Detector

Measurement Principles

 $\begin{array}{l} \mbox{Measurement of } \phi_1 \\ \mbox{Measurement in } b \rightarrow c \overline{c} s \mbox{ Transitions} \\ \mbox{Measurement in } b \rightarrow s q \overline{q} \mbox{ Transitions} \\ \mbox{Measurement in } B \rightarrow \omega K \mbox{ Decays} \end{array}$

Introduction to CP Violation	Belle Detector	Measurement Principles	Measurement of ϕ_1
Outline			

Introduction to CP Violation

Belle Detector Measurement Principles Measurement of ϕ_1 Measurement in b \rightarrow ccs Transiti Measurement in b \rightarrow sqq Transiti

Measurement in $B \rightarrow \omega K$ Decays

The $\ensuremath{\textbf{Standard}}$ $\ensuremath{\textbf{Model}}$ (SM) is a successful theory. However, it is incomplete and has flows such as

- missing explanation of gravity
- missing explanation of *Dark Matter and Dark Energy* (over 95% of the content of the Universe)
- assumption that *neutrinos* are massless (cannot explain the observed mixing)
- insufficient explanation of the **matter-antimatter asymmetry** in the Universe today.

To explain the Universal matter dominance, violation of the CP symmetry is needed (Sakharov 1967)

CP = C(charge conjugation) $\times P$ (parity transformation)

C transforms a particle into its antiparticle

P transforms a right-handed particle into a left-handed particle

Introduction to CP Violation	Belle Detector	Measurement Principles	Measurement of ϕ_1
CP Symmetry			

In the weak interaction...

(a) is the dominant process for π^+ decay. The neutrino ν_{μ} is always left-handed (Garwin et al. 1957; Friedman and Telegdi 1957)

Introduction to CP Violation	Belle Detector	Measurement Principles	Measurement of ϕ_1
CP Symmetry			

In the weak interaction...

- (a) is the dominant process for π^+ decay. The neutrino ν_{μ} is always left-handed (Garwin et al. 1957; Friedman and Telegdi 1957)
- (b) *P* conjugate process never occurs because the neutrino would be right-handed
- (c) C conjugate process also never occurs because $\overline{\nu}_{\mu}$ should be right-handed
- (d) CP conjugate process has same decay rate as (a) ⇒ combined CP symmetry is preserved.

Introduction to CP Violation	Belle Detector	Measurement Principles	Measurement of ϕ_1
CP Violation in t	he Standard Model		

- Clear experimental observation of CP violation in K and B meson decays
- In SM, CP violation arises in charged weak current interactions

$$\mathcal{L}^{(q)}_W = rac{g}{\sqrt{2}} (W^+_\mu ar{u}_L \gamma^\mu V_{\mathrm{CKM}} d_L + W^-_\mu ar{d}_L \gamma^\mu V^\dagger_{\mathrm{CKM}} u_L)$$

- Cabbibo-Kobayashi-Maskawa matrix $V_{\rm CKM}$ describes relative strengths of quark transitions

$$V_{
m CKM}\equiv \left(egin{array}{cc} V_{ud} & V_{us} & V_{ub} \ V_{cd} & V_{cs} & V_{cb} \ V_{td} & V_{ts} & V_{tb} \end{array}
ight)$$

- To conserve probability, $V_{\rm CKM}\,V_{\rm CKM}^{\dagger}=\mathbb{1}$ (unitarity)
- For 3 quark generations, unitarity reduces $V_{\rm CKM}$ to 3 real rotation angles and 1 complex phase

If
$$V_{\rm CKM}$$
 is complex, $CP\mathcal{L}^{(q)}_W
eq \mathcal{L}^{(q)}_W$ ie. CP is violated

• For only 2 quark generations, $V_{\rm CKM}$ real \Rightarrow CP in SM conserved

Represent $V_{\rm CKM}$ in terms of the Cabibbo angle, $\lambda = |V_{us}| = \sin \theta_{\rm C} \approx 0.23$ Gives a more intuitive picture of relative strengths between CKM elements

$$V_{\rm CKM} \equiv \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \approx \mathcal{O} \begin{pmatrix} 1 & \lambda & \lambda^3 \\ \lambda & 1 & \lambda^2 \\ \lambda^3 & \lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4)$$
$$V_{\rm CKM} V_{\rm CKM}^{\dagger} = \mathbb{1} \Rightarrow \sum_{j=1}^{3} V_{jk} V_{ij}^* = 0, \ i \neq k$$

In the K system

 $\frac{\mathbf{V}_{ud}\mathbf{V}_{us}^{*}}{\mathbf{V}_{cd}\mathbf{V}_{cs}^{*}} \mathbf{V}_{td}\mathbf{V}_{ts}^{*} \qquad \qquad \mathbf{V}_{ud}\mathbf{V}_{us}^{*} + \mathbf{V}_{cd}\mathbf{V}_{cs}^{*} + \mathbf{V}_{td}\mathbf{V}_{ts}^{*} = 0$ $\mathcal{O}(\lambda) \qquad \mathcal{O}(\lambda) \qquad \mathcal{O}(\lambda)$

- Amount of *CP* violation (CKM complex phase) reflected in the area of the triangle
- All unitarity triangles have the same area, accessible through measurement of their angles and sides
- Small angles \Rightarrow CP violation in the K sector is a small effect

CP Violation in the B system

$$\begin{split} \lambda &= |V_{us}| = \sin \theta_{\rm C} \approx 0.23 \qquad V_{\rm CKM} V_{\rm CKM}^{\dagger} = \mathbb{1} \Rightarrow \sum_{j=1}^{3} V_{jk} V_{ij}^{*} = 0, \ i \neq k \\ V_{\rm CKM} &\equiv \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \approx \mathcal{O} \begin{pmatrix} 1 & \lambda & \lambda^{3} \\ \lambda & 1 & \lambda^{2} \\ \lambda^{3} & \lambda^{2} & 1 \end{pmatrix} + \mathcal{O}(\lambda^{4}) \end{split}$$

In the B system

$$V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$$

 $\mathcal{O}(\lambda^3) \qquad \mathcal{O}(\lambda^3) \qquad \mathcal{O}(\lambda^3)$

- Larger angles \Rightarrow *CP* violation in the B sector is a considerable effect
- B meson system is a perfect environment for CP violation measurements
- Only 2 parameters needed to constrain the triangle, but 2 sides and 3 angles are measurable \rightarrow stringent test of the SM and search for New Physics possible

Introduction to CP Violation	Belle Detector	Measurement Principles	Measurement of ϕ_1
Outline			

Introduction to *CP* Violation Belle Detector

Measurement Principles

Measurement of ϕ_1

Measurement in b \rightarrow ccs Transitions Measurement in b \rightarrow sqq Transitions Measurement in B $\rightarrow \omega$ K Decays

Introduction to CP Violation	Belle Detector	Measurement Principles	Measurement of ϕ_1
Outline			

Introduction to *CP* Violation Belle Detector

Measurement Principles

Measurement of ϕ_1

Measurement in b \rightarrow ccs Transitions Measurement in b \rightarrow sqq Transitions Measurement in B $\rightarrow \omega$ K Decays

 $m_{\Upsilon(4S)} = 10.58 \,\mathrm{GeV/c^2}$ $\approx 2 \times m_\mathrm{B}$ $m_\mathrm{B} = 5.28 \,\mathrm{GeV/c^2}$

 $\Upsilon(4S)$ resonance decays almost exclusively into a BB pair $\Upsilon(4S)$: $J^P = 1^-$ B: $J^P = 0^-$

- $\Rightarrow B \text{ meson pair in a p-wave} \\\Rightarrow \text{ asymmetric wave function}$
- $\Rightarrow \mathsf{B} \text{ mesons must have} \\ \text{opposite flavour} \\$

 $\mathsf{B}\overline{\mathsf{B}}$ pair coherent

Δt measurement at Belle

Δt measurement

- Asymmetric beam energies at KEKB $E(e^{-}) = 8 \text{ GeV}$ and $E(e^{+}) = 3.5 \text{ GeV}$ $\Rightarrow \Upsilon(4S)$ produced with a boost $\beta \gamma c = 0.425$
- Measurement of $\sigma(\Delta z) \sim 100 \,\mu{\rm m}$ (measurable) instead of $\sigma(\Delta t) \sim \,{\rm ps}$ (unmeasurable)
- Obtain $\Delta t = \Delta z / \beta \gamma c$

Precise vertex measurement is the key to acccessing CP violation in B decays

Δt measurement at Belle

B flavour determination

- Suppose you can find a B decay to a CP eigenstate, B_{CP} , eg. $B^0(\overline{B}^0) \rightarrow \omega K_S^0$
- Suppose also, that the other B is flavour-specific final state, B_{Tag} , eg. $B^0 \rightarrow D^{*-} \ell^+ \nu_{\ell} \ (q = +1), \ \overline{B}{}^0 \rightarrow D^{*+} \ell^- \overline{\nu}_{\ell} \ (q = -1)$
- Probability of finding B_{CP} at time Δt after $\mathsf{B}_{\mathrm{Tag}}$ decayed with flavour, q

$$\mathcal{P}(\Delta t, q) = \frac{e^{-|\Delta t|/\tau_{B^0}}}{4\tau_{B^0}} \left[1 + q \left(\mathcal{A}_{CP} \cos \Delta m_d \Delta t + \mathcal{S}_{CP} \sin \Delta m_d \Delta t \right) \right]$$

Introduction to CP Violation	Belle Detector	Measurement Principles	Measurement of ϕ_1
Types of <i>CP</i> Violation			

Two types of CP violation can be measured from a CP final state of the B

$$\mathcal{P}(\Delta t, q) = \frac{e^{-|\Delta t|/\tau_{B^0}}}{4\tau_{B^0}} \left[1 + q \left(\mathcal{A}_{CP} \cos \Delta m_d \Delta t + \mathcal{S}_{CP} \sin \Delta m_d \Delta t \right) \right]$$

Direct CP violation ACP

Different decay rates

Mixing-induced CP violation S_{CP}

Arises from an interference between $B^0-\overline{B}{}^0$ mixing and the final state

Introduction to CP Violation	Belle Detector	Measurement Principles	Measurement of ϕ_1
Outline			

Introduction to *CP* Violation Belle Detector Measurement Principles

Measurement of ϕ_1

 $\begin{array}{l} \mbox{Measurement in } b \rightarrow c \overline{c} s \mbox{ Transitions} \\ \mbox{Measurement in } b \rightarrow s q \overline{q} \mbox{ Transitions} \\ \mbox{Measurement in } B \rightarrow \omega K \mbox{ Decays} \end{array}$

$$\mathcal{A}_{CP} \approx 0, \ \mathcal{S}_{CP} = \sin 2\phi_1$$

CP violation in the B sector first observed in the "golden channel" $B \rightarrow J/\psi K_S^0$ Belle, PRL **108**, 171802 (2012)

World's most precise measurement of sin $2\phi_1$

by Belle: $S_{CP}(J/\psi K_S^0) = \sin 2\phi_1 = 0.67 \pm 0.02 \pm 0.01$ BaBar: $S_{CP}(J/\psi K_S^0) = \sin 2\phi_1 = 0.69 \pm 0.03 \pm 0.01$

The next generation of B factories will push the uncertainty down to 1%

FCNC forbidden at tree level or tree CKM suppressed \Rightarrow penguin diagram dominates

- $S_{CP} = \sin 2\phi_1$, same as $b \to c\overline{c}s$
- Penguin amplitudes highly sensitive to New Physics
- Could be affected by a heavy unknown particle in the loop
- Measure branching fraction and CP violation parameters
- A deviation of these measurements from SM expectations will be an indication of New Physics

Introduction to	CP Violation
-----------------	--------------

Belle Detector

0.68 ± 0.02 0.74 +0.11 0.59 ± 0.07 0.72 ± 0.19 0.57 ± 0.17 0.54 +0.12 0.45 ± 0.24 0.69 +0.12 0.48 ± 0.53 0.07 ± 0.53 0.72 ± 0.71 0.74 ± 0.53 0.72 ± 0.71 0.75 ± 0.75 ± 0.71 0.75 ± 0.75 ± 0.71 0.75 ± 0.75

Measurement of ϕ_1 : b \rightarrow sq \overline{q}

Theory

Experiment

- a off

	, or y	$\sin(2\beta^{cn}) \equiv \sin(2\theta)$
hep-ph/0707.1323	, hep-ph/0702252	b
	, , ,	
Mode	${\cal S}_{CP}-{\sf sin}2\phi_1$	η' K ^o Average +*
$B^0 \to \phi K^0$	0.02 ± 0.01	κ _s κ _s κ _s Average ⊢
$= 0 \qquad (10)$	0.02 ± 0.01	π ⁰ K ⁰ Average
$B^{o} o \eta' K^{o}_{S}$	0.01 ± 0.01	ρ⁰ K _s Average ⊷★
$B^0 \rightarrow K^0_c K^0_c K^0_c$	$0.02^{+0.02}$	ωκ _s Average 🛏 ★
	0.07 ± 0.03	f₀ Ks Average ⊢
$B^{*} \rightarrow \kappa_{S} \pi^{*}$	$0.07_{-0.04}$	f ₂ K ₈ Average
$B^0 o ho^0 K^0_S$	$-0.08^{+0.08}_{-0.12}$	f _x K _s Average + + +
$B^0 \to \omega K^0$	0.13 ± 0.08	π ^ο π ⁹ K _S Averag s
$D \rightarrow \omega R_{\rm S}$	0.15 ± 0.00	φπ ⁰ K _s Average ⊢
$B^{o} \to K^{o}_{S} \pi^{o} \pi^{o}$	$0.03^{+0.02}_{-0.03}$	π [*] π΄ K _s N A verage
$B^0 \rightarrow K^+ K^- K_c^0$	$0.03^{+0.02}$	K ^s ≪ K ^o Average ⊢
		🖞 Average

-1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Predicted in SM to have higher CP asymmetries than $b \rightarrow sq\overline{q}$ But most $b \rightarrow sq\overline{q}$ measurements at or below $b \rightarrow c\overline{c}s$ measurements More experimental precision required

Introduction to CP Violation Belle Detector Measurement Principles Measurement of ϕ_1 Measurement of ϕ_1 : B $\rightarrow \omega$ K

My PhD thesis

The final measurement of $B\to\omega K$ with the full data set of Belle 772×10^6 BB pairs

Challenging analysis

- $\mathcal{BR}(B \rightarrow \omega K) \sim 10^{-6}$ (small)
- Large background contribution from $q\overline{q}$ (u,d,s,c) background

	${\sf B^0} o \omega {\sf K^0_S}$	${f B}^+ o \omega {f K}^+$
signal	pprox 240	pprox 1150
$q\overline{q}(q=u,d,s,c)\;BG$	pprox 17000	pprox 85000
$B\overline{B}$ BG	pprox 360	pprox 1700

Black font: previous measurements Blue font: Full Belle data set of 772×10^6 B \overline{B} pairs

	$B\overline{B}$ -pairs	${\cal BR}({\sf B^0} o \omega {\sf K^0})$	\mathcal{A}_{CP}	\mathcal{S}_{CP}
Belle	$388 imes 10^6$	$(4.4^{+0.8}_{-0.7}\pm0.4) imes10^{-6}$	-	-
Belle	535×10^{6}	-	$-0.09 \pm 0.29 \pm 0.06$	$0.11 \pm 0.46 \pm 0.07$
BaBar	467×10^6	$(5.4\pm 0.8\pm 0.3)\times 10^{-6}$	$0.52^{+0.22}_{-0.20}\pm0.03$	$0.55^{+0.26}_{-0.29}\pm0.02$
Belle	772×10^{6}	$(4.5\pm 0.4\pm 0.3)\times 10^{-6}$	$-0.36 \pm 0.19 \pm 0.05$	$0.91 \pm 0.32 \pm 0.05$

	$B\overline{B}$ -pairs	${\cal BR}({\sf B}^+ o \omega {\sf K}^+)$	\mathcal{A}_{CP}
Belle	388×10^6	$(8.1\pm 0.6\pm 0.6)\times 10^{-6}$	$0.05^{+0.08}_{-0.07}\pm0.01$
BaBar	$383\times\mathbf{10^{6}}$	$(6.3\pm 0.5\pm 0.3)\times 10^{-6}$	$-0.01 \pm 0.07 \pm 0.01$
Belle	772×10^{6}	$(6.8\pm 0.4\pm 0.4)\times 10^{-6}$	$-0.03 \pm 0.04 \pm 0.01$

Paper submitted to PRD, in review; arXiv 1311.6666

First evidence of CP violation in $B^0
ightarrow \omega K^0_S$

Clear asymmetry can be seen in the difference between the B^0 and $\overline{B}{}^0$ distributions

CP conservation $(A_{CP}, S_{CP}) = (0, 0)$ ruled out by 3.1 standard deviations

Introduction to CP Violation Belle Detector Measurement Principles Measurement of ϕ_1

- CP violation is a fascinating effect with a great impact in cosmology
- Predicted in the Standard Model; it has been observed in K and B decays
- ϕ_1 is the most precisely measured parameter of the unitarity triangle
- ϕ_1 accessible in penguin-dominated decays, sensitive to New Physics
- So far, measurements of the unitarity triangle consistent with the Standard Model prediction but with huge uncertainties
- More precise theoretical calculations and measurements needed to challenge the Standard Model

Thank you for your attention

