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Motivation

Our world has 4 spacetime dimensions, strings live in ten. Since
10 >4

we need compactification manifolds.

The goal of this talk is to
@ shed some light on their construction

@ discuss what geometric properties we can hope to compute
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Ambient spaces

Defining manifolds

Very roughly speaking, there are two relevant ways of defining a manifold
/ variety. Consider the circle S:

@ Explicitly - parametrize it by a coordinate and give its range:
X ~x+2mwr, x€|0,27r]

@ Implicitly - embed it into a higher-dimensional, but simpler space:
X ty?=r% (xy)eR?

Either way, one describes the same circle:
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Ambient spaces

Defining manifolds

“Simple" spaces like R" or C" are best defined explicitly. However, more
complicated spaces often have no such description. Therefore we define
our manifold as

p(xi) =0,

where p is a polynomial in the coordinates of the ambient space. p =0
defines a hypersurface. Since p is a polynomial, we have an algebraic
problem: = Use algebraic geometry!

Before focusing on the hypersurface, let us take a look at appropriate
ambient spaces.
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Ambient spaces

Ambient spaces

What properties do we want our ambient space to have?
© Simple to describe, e.g. simple coordinate ranges

@ Under best possible mathematical control, so that we have better
control over the hypersurface, too

© Complex, i.e. parametrized by complex coordinates
Q@ Compact

Condition 4 forbids vector spaces. What other "simple" spaces are there?
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Ambient spaces

Projective space

Projective spaces come to the rescue:

o Real projective space: RP" = R"™1\{0}/ ~, where X ~ AX for
A € R\{0}. RP" = space of rays in R"*1.

o Complex projective space: CP" = C"t1\{0}/ ~, where X ~ AX for
A € C\{0}.

We describe CP" using the redundant coordinates of C"*1 and call them
homogeneous coordinates.

Notation: [zg:z :---: z,] € CP".
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Ambient spaces

Projective space, examples

Let's see how CP! differs from C by studying its points [z : z1]:
o If zp # 0, rescale by A = 1/z to obtain [1: z1/z] = [1 : z{], which
describes the same point. z] can take any value, so [zg : z1] with
z9 # 0 is just C.
o If zp =0, then z; # 0 and we rescale by 1/z;: [0: z] = [0 : 1], which
is a single point.
Hence we find that CP! = C + pt. CP! is the compactification of C
obtained by adding a point at infinity and topologically CP! ~ §2,

Projective spaces are "nicer” from a mathematical point of view than C".
For example, in S? two straight lines always intersect twice - no special
case for parallel lines.

Weighted projective space: Allow e.g. (20, z1,20) ~ (A320, \221, A\20)
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Ambient spaces

More general spaces

Lastly, there is yet another generalization: Start with C”, remove some
lower-dimensional piece Z and impose multiple equivalence relations of the

previous kind:

X =CNZ/~

All such spaces are toric varieties. Obviously, we have:

Weighted
projective
spaces

Toric varieties
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Ambient spaces

Toric varieties

Why are toric varieties interesting? Their defining data is given by discrete
numbers and is hence combinatorial.

Combinatorial data can often be visualized:
e Consider the vectors v = (1,0),v» = (0,1), v = (=3, —2).
@ They are related by 3- V4 +2-v4 + -v3 = 0.
e One thus associates them with C3\{0}/ ~ where
(20,21, 22) ~ (A320, A\%21, A25). This is just W]P%’Q’l.
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Engineering singularities

Fibrations

Next, we would like to construct torus fibered Calabi-Yau manifold for
F-theory. (cf Federico's talk)

To do so, construct a fibered ambient space as in

—

pren—

where the ambient fiber space becomes reducible over the location of the
GUT branes:

F—FRUFRU---UF,
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Resolved fiber singularities

We can then study the ambient fiber over different places in the base and
read off its form.

o Fiber over GUT brane:
Fiber over generic point: affine Dynkin diagram of gauge
T2 ambient space group
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Conclusion

Conclusion

In summary, the main message is:

Constructing Calabi-Yau
manifolds with many
continuous parameters

can be reduced to Manipulating discrete
combinatorial toric data

Toric ambient spaces are hence useful for the following reasons:

@ There is a large number of them and many more spaces can be
embedded in them.

@ Their theory is well understood and allows to compute cohomology
classes and intersection numbers.

@ Their data is combinatorial and can easily and efficiently be handled
by a computer.
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Conclusion

Thank you!
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