Engineering Calabi-Yau manifolds

Jan Keitel

Max-Planck-Institut für Physik, München

February 14th, 2014

Jan Keitel (Max-Planck-Institut für Physik, N

Engineering Calabi-Yau manifolds

Motivation

Our world has 4 spacetime dimensions, strings live in ten. Since

10 > 4

we need compactification manifolds.

The goal of this talk is to

- shed some light on their construction
- discuss what geometric properties we can hope to compute

Defining manifolds

Very roughly speaking, there are two relevant ways of defining a manifold / variety. Consider the circle S^1 :

- Explicitly parametrize it by a coordinate and give its range: $x \sim x + 2\pi r$, $x \in [0, 2\pi r]$
- Implicitly embed it into a higher-dimensional, but simpler space: $x^2 + y^2 = r^2$, $(x, y) \in \mathbb{R}^2$

Either way, one describes the same circle:

글 > - + 글 >

Defining manifolds

"Simple" spaces like \mathbb{R}^n or \mathbb{C}^n are best defined explicitly. However, more complicated spaces often have no such description. Therefore we define our manifold as

$$p(x_i)=0\,,$$

where p is a polynomial in the coordinates of the ambient space. p = 0 defines a hypersurface. Since p is a polynomial, we have an algebraic problem: \implies Use algebraic geometry!

Before focusing on the hypersurface, let us take a look at appropriate ambient spaces.

- 本部 とくき とくき とうき

Ambient spaces

What properties do we want our ambient space to have?

- Simple to describe, e.g. simple coordinate ranges
- Onder best possible mathematical control, so that we have better control over the hypersurface, too
- Somplex, i.e. parametrized by complex coordinates
- Compact

Condition 4 forbids vector spaces. What other "simple" spaces are there?

EN 4 EN

Projective space

Projective spaces come to the rescue:

- Real projective space: $\mathbb{RP}^n = \mathbb{R}^{n+1} \setminus \{\vec{0}\} / \sim$, where $\vec{x} \sim \lambda \vec{x}$ for $\lambda \in \mathbb{R} \setminus \{0\}$. \mathbb{RP}^n = space of rays in \mathbb{R}^{n+1} .
- Complex projective space: $\mathbb{CP}^n = \mathbb{C}^{n+1} \setminus \{\vec{0}\}/\sim$, where $\vec{x} \sim \lambda \vec{x}$ for $\lambda \in \mathbb{C} \setminus \{0\}$.

We describe \mathbb{CP}^n using the redundant coordinates of \mathbb{C}^{n+1} and call them *homogeneous* coordinates.

Notation: $[z_0 : z_1 : \cdots : z_n] \in \mathbb{CP}^n$.

Projective space, examples

Let's see how \mathbb{CP}^1 differs from \mathbb{C} by studying its points $[z_0 : z_1]$:

- If $z_0 \neq 0$, rescale by $\lambda = 1/z_0$ to obtain $[1 : z_1/z_0] = [1 : z'_1]$, which describes the same point. z'_1 can take any value, so $[z_0 : z_1]$ with $z_0 \neq 0$ is just \mathbb{C} .
- If $z_0 = 0$, then $z_1 \neq 0$ and we rescale by $1/z_1$: $[0 : z_1] = [0 : 1]$, which is a single point.

Hence we find that $\mathbb{CP}^1 = \mathbb{C} + pt$. \mathbb{CP}^1 is the compactification of \mathbb{C} obtained by adding a point at infinity and topologically $\mathbb{CP}^1 \simeq S^2$.

Projective spaces are "nicer" from a mathematical point of view than \mathbb{C}^n . For example, in S^2 two straight lines always intersect twice - no special case for parallel lines.

Weighted projective space: Allow e.g. $(z_0, z_1, z_2) \sim (\lambda^3 z_0, \lambda^2 z_1, \lambda z_2)$

More general spaces

Lastly, there is yet another generalization: Start with \mathbb{C}^n , remove some lower-dimensional piece Z and impose multiple equivalence relations of the previous kind:

$$X = \mathbb{C}^n \backslash Z / \sim$$

All such spaces are toric varieties. Obviously, we have:

Toric varieties

Why are toric varieties interesting? Their defining data is given by discrete numbers and is hence *combinatorial*.

Combinatorial data can often be visualized:

- Consider the vectors $\vec{v}_1 = (1,0), \vec{v}_2 = (0,1), \vec{v}_3 = (-3,-2).$
- They are related by $3 \cdot \vec{v}_1 + 2 \cdot \vec{v}_1 + \cdot \vec{v}_3 = \vec{0}$.
- One thus associates them with $\mathbb{C}^3 \setminus \{\vec{0}\}/\sim$ where $(z_0, z_1, z_2) \sim (\lambda^3 z_0, \lambda^2 z_1, \lambda z_2)$. This is just $\mathbb{WP}^2_{3,2,1}$.

Fibrations

Next, we would like to construct torus fibered Calabi-Yau manifold for F-theory. (cf Federico's talk)

To do so, construct a fibered ambient space as in

where the ambient fiber space becomes reducible over the location of the GUT branes:

$$F \mapsto F_1 \cup F_2 \cup \cdots \cup F_n$$

Resolved fiber singularities

We can then study the ambient fiber over different places in the base and read off its form.

Fiber over generic point: T^2 ambient space

Fiber over GUT brane: affine Dynkin diagram of gauge group

Conclusion

In summary, the main message is:

Constructing Calabi-Yau manifolds with many continuous parameters can be reduced to can be reduced to combinatorial toric data

Toric ambient spaces are hence useful for the following reasons:

- There is a large number of them and many more spaces can be embedded in them.
- Their theory is well understood and allows to compute cohomology classes and intersection numbers.
- Their data is combinatorial and can easily and efficiently be handled by a computer.

A 12 N A 12 N

Thank you!

Jan Keitel (Max-Planck-Institut für Physik, N

Engineering Calabi-Yau manifolds

February 14th, 2014 13 / 13

3

イロト イポト イヨト イヨト