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Motivation

Motivation

Our world has 4 spacetime dimensions, strings live in ten. Since

10 > 4

we need compactification manifolds.

The goal of this talk is to

shed some light on their construction

discuss what geometric properties we can hope to compute
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Ambient spaces

Defining manifolds

Very roughly speaking, there are two relevant ways of defining a manifold
/ variety. Consider the circle S1:

Explicitly - parametrize it by a coordinate and give its range:
x ∼ x + 2πr , x ∈ [0, 2πr ]

Implicitly - embed it into a higher-dimensional, but simpler space:
x2 + y2 = r2, (x , y) ∈ R2

Either way, one describes the same circle:
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Ambient spaces

Defining manifolds

“Simple“ spaces like Rn or Cn are best defined explicitly. However, more
complicated spaces often have no such description. Therefore we define
our manifold as

p(xi ) = 0 ,

where p is a polynomial in the coordinates of the ambient space. p = 0
defines a hypersurface. Since p is a polynomial, we have an algebraic
problem: =⇒ Use algebraic geometry!

Before focusing on the hypersurface, let us take a look at appropriate
ambient spaces.
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Ambient spaces

Ambient spaces

What properties do we want our ambient space to have?

1 Simple to describe, e.g. simple coordinate ranges

2 Under best possible mathematical control, so that we have better
control over the hypersurface, too

3 Complex, i.e. parametrized by complex coordinates

4 Compact

Condition 4 forbids vector spaces. What other ”simple“ spaces are there?
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Ambient spaces

Projective space

Projective spaces come to the rescue:

Real projective space: RPn = Rn+1\{~0}/ ∼, where ~x ∼ λ~x for
λ ∈ R\{0}. RPn = space of rays in Rn+1.

Complex projective space: CPn = Cn+1\{~0}/ ∼, where ~x ∼ λ~x for
λ ∈ C\{0}.

We describe CPn using the redundant coordinates of Cn+1 and call them
homogeneous coordinates.

Notation: [z0 : z1 : · · · : zn] ∈ CPn.
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Ambient spaces

Projective space, examples

Let’s see how CP1 differs from C by studying its points [z0 : z1]:

If z0 6= 0, rescale by λ = 1/z0 to obtain [1 : z1/z0] = [1 : z ′1], which
describes the same point. z ′1 can take any value, so [z0 : z1] with
z0 6= 0 is just C.

If z0 = 0, then z1 6= 0 and we rescale by 1/z1: [0 : z1] = [0 : 1], which
is a single point.

Hence we find that CP1 = C + pt. CP1 is the compactification of C
obtained by adding a point at infinity and topologically CP1 ' S2.

Projective spaces are ”nicer“ from a mathematical point of view than Cn.
For example, in S2 two straight lines always intersect twice - no special
case for parallel lines.

Weighted projective space: Allow e.g. (z0, z1, z2) ∼ (λ3z0, λ
2z1, λz2)
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Ambient spaces

More general spaces

Lastly, there is yet another generalization: Start with Cn, remove some
lower-dimensional piece Z and impose multiple equivalence relations of the
previous kind:

X = Cn\Z/ ∼

All such spaces are toric varieties. Obviously, we have:

Toric varieties
Weighted
projective
spaces

Projective spaces

Jan Keitel (Max-Planck-Institut für Physik, München)Engineering Calabi-Yau manifolds February 14th, 2014 8 / 13



Ambient spaces

Toric varieties

Why are toric varieties interesting? Their defining data is given by discrete
numbers and is hence combinatorial.

Combinatorial data can often be visualized:

Consider the vectors ~v1 = (1, 0), ~v2 = (0, 1), ~v3 = (−3,−2).

They are related by 3 · ~v1 + 2 · ~v1 + ·~v3 = ~0.

One thus associates them with C3\{~0}/ ∼ where
(z0, z1, z2) ∼ (λ3z0, λ

2z1, λz2). This is just WP2
3,2,1.
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Engineering singularities

Fibrations

Next, we would like to construct torus fibered Calabi-Yau manifold for
F-theory. (cf Federico’s talk)
To do so, construct a fibered ambient space as in

where the ambient fiber space becomes reducible over the location of the
GUT branes:

F 7→ F1 ∪ F2 ∪ · · · ∪ Fn
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Engineering singularities

Resolved fiber singularities

We can then study the ambient fiber over different places in the base and
read off its form.

Fiber over generic point:
T 2 ambient space

Fiber over GUT brane:
affine Dynkin diagram of gauge
group
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Conclusion

Conclusion

In summary, the main message is:

Constructing Calabi-Yau
manifolds with many

continuous parameters

Manipulating discrete
combinatorial toric data

can be reduced to

Toric ambient spaces are hence useful for the following reasons:

There is a large number of them and many more spaces can be
embedded in them.

Their theory is well understood and allows to compute cohomology
classes and intersection numbers.

Their data is combinatorial and can easily and efficiently be handled
by a computer.
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Conclusion

Thank you!
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