Automated computation of scattering amplitudes

Tiziano Peraro

Max-Planck-Institut für Physik Föhringer Ring 6, D-80805 München, Germany

Particle Physics School Munich Colloquium Friday, March 14th, 2014

Outline

- Introduction and motivation
- Amplitudes, trees and loops
- One-loop amplitudes
- 4 Higher loops
- Summary & Conclusions

Outline

- Introduction and motivation
- 2 Amplitudes, trees and loops
- One-loop amplitudes
- 4 Higher loops
- 5 Summary & Conclusions

Motivation

- The Large Hadron Collider (LHC) proved to be capable of
 - validating SM in unexplored regions of the phase space
 - making new discoveries, e.g. a Higgs(-like?) boson
- LHC high-energy events are characterized by
 - large SM background (could hide new physics)
 - multi-particle final states

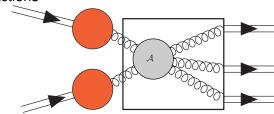
How to make the best use of LHC data?

We need theoretical predictions with

- high accuracy
- multi-particle interactions

Scattering Amplitudes

Hadron collider interactions



- Scattering amplitudes represent
 - the process-dependent part of a physical event
 - the main point of contact btw. theoretical models and phenomenology
- They can be computed in perturbation theory

$$\mathcal{A} \sim \mathcal{A}_{10} + \alpha \, \mathcal{A}_{N10} + \alpha^2 \, \mathcal{A}_{NN10} + \dots$$

Why automation?

- avoid human mistakes
- the complexity of the computation is often too high (for a human)
 - ...but it can be managed by a computer
- every new process requires the computation of new amplitudes
 - implement a universal algorithm once and let the computer do the job every time
- testing new models becomes easier
- experimenting with new/different computational techniques is easier within automated frameworks
- •

Outline

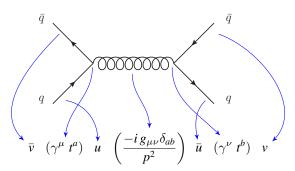
- Introduction and motivation
- 2 Amplitudes, trees and loops
- One-loop amplitudes
- 4 Higher loops
- 5 Summary & Conclusions

How to compute a scattering amplitude

A amplitude is a sum of contributions called Feynman diagrams

$$\mathcal{A} = \sum_{i} \mathcal{D}$$

- Each diagram has a representation as a graph
 - Feynman rules: each vertex, external and internal line correspond to an algebraic factor



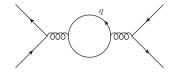
How to compute a scattering amplitude

A strategy:

- draw the Feynman diagrams
 - easy with the right software (FeynArts [T. Hahn], QGRAF [P. Nogueira], ...)
- substitute the Feynman rules
 - use a CAS (e.g. FORM [J. Vermaseren])
 - not always easy (because of renorm. schemes, counter-terms, etc...)
 - ... but they must be implemented only once per theoretical model
- work out the computation
 - typically easy at leading order (LO)
 - usually pure algebra
 - difficult at next-to-leading order (NLO) and beyond
 - involves the computation of integrals

Amplitudes and loop integrals

Integrals come from diagrams with loops



- the momentum q running in the loop is not fixed by momentum conservation
- from QM: all the values of q give a contribution

$$\mathcal{A} \sim \langle \psi_{out} | \psi_{in} \rangle \sim \sum_{q} \langle \psi_{out} | q \rangle \langle q | \psi_{in} \rangle, \qquad ext{continuum} : \sum_{q}
ightarrow \int d^4q$$

- Integration should be done in d dimensions: $d^4q \rightarrow d^dq$
 - physical observables are finite for $d \rightarrow 4$ (amplitudes are not!)

Outline

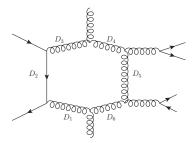
- Introduction and motivation
- 2 Amplitudes, trees and loops
- One-loop amplitudes
- 4 Higher loops
- 5 Summary & Conclusions

One-loop amplitudes

- The integrand of a generic *n*-point one-loop integral:
 - is a rational function in the components of the loop momentum q
 - ullet polynomial numerator ${\mathcal N}$

$$\mathcal{M}_n = \int d^d q \;\; \mathcal{I}_n, \qquad \mathcal{I}_n \equiv rac{\mathcal{N}(q)}{D_1 \dots D_n}$$

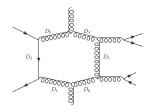
- quadratic polynomial denominators D_i
 - they correspond to Feynman loop propagators



Loop denominators

From the Feynman rules:

$$D_i = \left(\mathbf{q} + p_i\right)^2 - m_i^2$$



$$\mathcal{M}_n = \int d^d q \; rac{\mathcal{N}(q)}{D_1 \dots D_n}$$

- In multi-particle scattering amplitudes
 - the number of diagrams (i.e. integrals to be computed) is higher
 - up to thousands or even more
 - ullet the numerators ${\cal N}$ are more complex
 - the number of loop denominators is high
 - can be equal to the number of external legs
- Integrand reduction of one-loop amplitudes
 - rewrite the integrand as a sum of "simpler" integrands
 - use an algorithm suited for automation

$$=\Sigma + \Sigma + \Sigma + \Sigma + \Sigma + \Sigma$$

 Every one-loop integrand, can be decomposed as [Ossola, Papadopoulos, Pittau (2007); Ellis, Giele, Kunszt, Melnikov (2008)]

$$\frac{\mathcal{N}}{D_1 \cdots D_n} = \sum_{j_1 \dots j_5} \frac{\Delta_{j_1 j_2 j_3 j_4 j_5}}{D_{j_1} D_{j_2} D_{j_3} D_{j_4} D_{j_5}} + \sum_{j_1 \dots j_4} \frac{\Delta_{j_1 j_2 j_3 j_4}}{D_{j_1} D_{j_2} D_{j_3} D_{j_4}} + \dots + \sum_{j_1} \frac{\Delta_{j_1}}{D_{j_1}}$$

- a sum of integrands with 5 or less loop denominators
- The residues $\Delta_{i_1 \cdots i_k}$
 - are polynomials in the components of q
 - have a known, universal parametric form
 - are parametrized by unknown, process-dependent coefficients
 - ⇒ can be completely determined with a polynomial fit

Choice of 4-dimensional basis for an m-point residue

$$e_1^2 = e_2^2 = 0$$
, $e_1 \cdot e_2 = 1$, $e_3^2 = e_4^2 = \delta_{m4}$, $e_3 \cdot e_4 = -(1 - \delta_{m4})$

• Coordinates: $\mathbf{z} = (z_1, z_2, z_3, z_4, z_5) \equiv (x_1, x_2, x_3, x_4, \mu^2)$

$$q_{4\text{-dim}}^{\mu} = -p_{i_1}^{\mu} + x_1 e_1^{\mu} + x_2 e_2^{\mu} + x_3 e_3^{\mu} + x_4 e_4^{\mu}, \qquad \bar{q}^2 = q_{4\text{-dim}}^2 - \mu^2$$

Generic numerator

$$\mathcal{N} = \sum_{j_1, \dots, j_5} \alpha_{\vec{j}} \, z_1^{j_1} \, z_2^{j_2} \, z_3^{j_3} \, z_4^{j_4} \, z_5^{j_5}, \qquad (j_1 \dots j_5) \quad \text{such that} \quad \text{rank}(\mathcal{N}) \le \# \text{loop-denom}.$$

Residues

$$\begin{split} &\Delta_{i_1 i_2 i_3 i_4 i_5} = c_0 \, \mu^2 \\ &\Delta_{i_1 i_2 i_3 i_4} = c_0 + c_1 x_4 + \mu^2 (c_2 + c_3 x_4 + \mu^2 c_4) \\ &\Delta_{i_1 i_2 i_3} = c_0 + c_1 x_3 + c_2 x_3^2 + c_3 x_3^3 + c_4 x_4 + c_5 x_4^2 + c_6 x_4^3 + \mu^2 (c_7 + c_8 x_3 + c_9 x_4) \\ &\Delta_{i_1 i_2} = c_0 + c_1 x_2 + c_2 x_3 + c_3 x_4 + c_4 x_2^2 + c_5 x_3^2 + c_6 x_4^2 + c_7 x_2 x_3 + c_9 x_2 x_4 + c_9 \mu^2 \\ &\Delta_{i_1} = c_0 + c_1 x_1 + c_2 x_2 + c_3 x_3 + c_4 x_4 \end{split}$$

It can be easily extended to higher-rank numerators

- After integration
 - some terms vanish and do not contribute to the amplitude
 ⇒ spurious terms
 - non-vanishing terms give Master Integrals (MIs)
 - the amplitude is a linear combination of known MIs
- The coefficients of this linear combination
 - can be identified with some of the coefficients which parametrize the polynomial residues

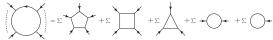
- After integration
 - some terms vanish and do not contribute to the amplitude
 ⇒ spurious terms
 - non-vanishing terms give Master Integrals (MIs)
 - the amplitude is a linear combination of known MIs
- The coefficients of this linear combination
 - can be identified with some of the coefficients which parametrize the polynomial residues
 - \Rightarrow reduction to MIs \equiv polynomial fit of the residues

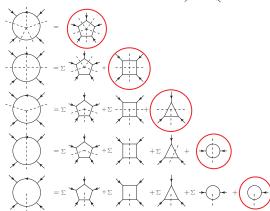
- After integration
 - some terms vanish and do not contribute to the amplitude
 ⇒ spurious terms
 - non-vanishing terms give Master Integrals (MIs)
 - the amplitude is a linear combination of known MIs
- The coefficients of this linear combination
 - can be identified with some of the coefficients which parametrize the polynomial residues
 - \Rightarrow reduction to MIs \equiv polynomial fit of the residues
- ★ any one-loop amplitude can be computed with a polynomial fit

Fit-on-the-cut at one-loop

[Ossola, Papadopoulos, Pittau (2007)]

Integrand decomposition:





Fit-on-the cut

- fit *m*-point residues on *m*-ple cuts
- Cutting a loop propagator means

$$\frac{1}{D_i} \to \delta(D_i)$$

i.e. putting it on-shell

Automation of one-loop computation

In several one-loop packages we can distinguish three phases:

- Generation
 - generate the integrand
 - cast it in a suitable form for reduction
 - write it in a piece of source code (e.g. FORTRAN or C/C++)
- Compilation
 - compile the code
- Run-time
 - use a reduction library in order to compute the integrals

GoSam is a PYTHON package which:

- generates analytic integrands
 - using QGRAF and FORM
- writes them into FORTRAN90 code
- can use different reduction algorithms at run-time

GOSAM is a PYTHON package which:

- generates analytic integrands
 - using QGRAF and FORM
- writes them into FORTRAN90 code
- can use different reduction algorithms at run-time
 - SAMURAI (d-dim. integrand reduction)
 - faster than GOLEM95 but numerically less stable
 - current default (in GoSAM-1.0)

GoSam is a PYTHON package which:

- generates analytic integrands
 - using QGRAF and FORM
- writes them into FORTRAN90 code
- can use different reduction algorithms at run-time
 - SAMURAI (*d*-dim. integrand reduction)
 - faster than GOLEM95 but numerically less stable
 - current default (in GoSAM-1.0)
 - GOLEM95 (tensor reduction)
 - slower than SAMURAI but more stable
 - default rescue-system for unstable points

GoSam is a PYTHON package which:

- generates analytic integrands
 - using QGRAF and FORM
- writes them into FORTRAN90 code
- can use different reduction algorithms at run-time
 - SAMURAI (d-dim. integrand reduction)
 - faster than GOLEM95 but numerically less stable
 - current default (in GoSAM-1.0)
 - GOLEM95 (tensor reduction)
 - slower than SAMURAI but more stable
 - default rescue-system for unstable points
 - NINJA
 - implements a new integrand reduction algorithm
 - fast (2 to 5 times faster than SAMURAI)
 - stable (in worst cases $\mathcal{O}(1/1000)$ unstable points)
 - new default (in GoSAM-2.0)

P. Mastrolia, E. Mirabella, T.P. (2012)

The integrand reduction via Laurent expansion:

- fits residues by taking their asymptotic expansions on the cuts
 - elaborating ideas first proposed by Forde and Badger
- yields diagonal systems of equations for the coefficients
- requires the computation of fewer coefficients
- subtractions of higher point residues is simplified
 - implemented as corrections at the coefficient level

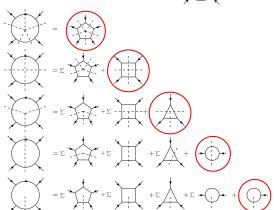
P. Mastrolia, E. Mirabella, T.P. (2012)

The integrand reduction via Laurent expansion:

- fits residues by taking their asymptotic expansions on the cuts
 - elaborating ideas first proposed by Forde and Badger
- yields diagonal systems of equations for the coefficients
- requires the computation of fewer coefficients
- subtractions of higher point residues is simplified
 - implemented as corrections at the coefficient level
- ★ Implemented in the semi-numerical C++ library NINJA [T.P. (2014)]
 - Laurent expansions via a simplified polynomial-division algorithm
 - interfaced with the package GoSAM
 - is a faster and more stable integrand-reduction algorithm

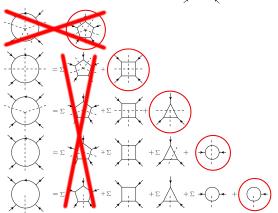
Integrand decomposition:

$$=\Sigma + \Sigma + \Sigma + \Sigma + \Sigma + \Sigma + \Sigma$$



Integrand decomposition:

$$=\Sigma + \Sigma + \Sigma + \Sigma + \Sigma + \Sigma$$

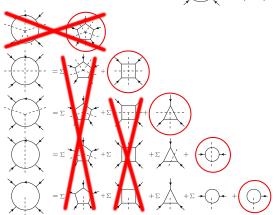


Laurent-expansion method

pentagons not needed

Integrand decomposition:

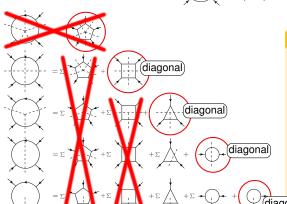
$$= \Sigma + \Sigma + \Sigma + \Sigma + \Sigma + \Sigma$$



- pentagons not needed
- boxes never subtracted

Integrand decomposition:

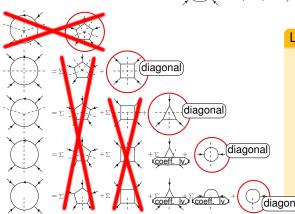
$$= \Sigma + \Sigma + \Sigma + \Sigma + \Sigma + \Sigma$$



- pentagons not needed
- boxes never subtracted
- diagonal systems of equations

Integrand decomposition:

$$= \Sigma + \Sigma + \Sigma + \Sigma + \Sigma + \Sigma + \Sigma$$



- pentagons not needed
- boxes never subtracted
- diagonal systems of equations
- subtractions at coefficient level

Benchmarks of GoSAM + NINJA

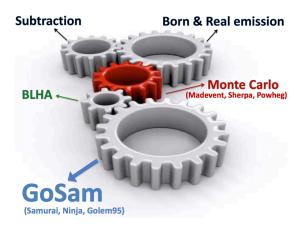
H. van Deurzen, G. Luisoni, P. Mastrolia, E. Mirabella, G. Ossola and T.P. (2013)

Benchmarks: GOSAM + NINJA			
Process		# NLO diagrams	ms/event ^a
W+3j	$d\bar{u} \rightarrow \bar{\nu}_e e^- ggg$	1 411	226
Z+3j	$d\bar{d} \rightarrow e^+e^-ggg$	2 928	1 911
$t\bar{t}b\bar{b}\ (m_b \neq 0)$	$d\bar{d} \rightarrow t\bar{t}b\bar{b}$	275	178
	$gg \rightarrow t\bar{t}b\bar{b}$	1 530	5 685
$t\bar{t} + 2j$	$gg \rightarrow t\bar{t}gg$	4 700	13 827
$W b \bar{b} + 1 j (m_b \neq 0)$	$u\bar{d} \rightarrow e^+ \nu_e b\bar{b}g$	312	67
$W b \bar{b} + 2j (m_b \neq 0)$	$u\bar{d} \rightarrow e^+ \nu_e b\bar{b}s\bar{s}$	648	181
	$u\bar{d} \rightarrow e^+ \nu_e b\bar{b}d\bar{d}$	1 220	895
	$u\bar{d} \rightarrow e^+ \nu_e b\bar{b}gg$	3 923	5 387
H + 3j in GF	$gg \rightarrow Hggg$	9 325	8 961
$t\bar{t}H + 1j$	$gg \rightarrow t\bar{t}Hg$	1 517	1 505
H + 3j in VBF	$u\bar{u} \to Hgu\bar{u}$	432	101
H + 4j in VBF	uū → Hgguū	1 176	669
H + 5j in VBF	uū → Hggguū	15 036	29 200

more processes in arXiv:1312.6678

 $^{^{}a}$ Timings refer to full color- and helicity-summed amplitudes, using an Intel Core i7 CPU @ 3.40GHz, compiled with <code>ifort</code>.

From amplitudes to observables with GoSAM



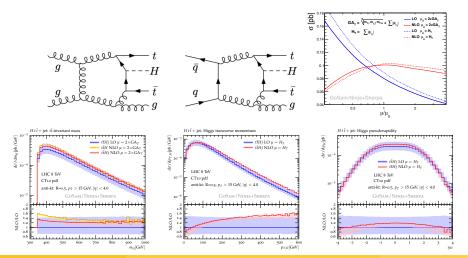
The GoSAM collaboration:

G. Cullen, H. van Deurzen, N. Greiner, G. Heinrich, G. Luisoni, P. Mastrolia, E. Mirabella, G. Ossola, J. Reichel, J. Schlenk, J. F. von Soden-Fraunhofen, T. Reiter, F. Tramontano, T.P.

Application: $pp \rightarrow t\bar{t}H + jet$ with GoSAM + NINJA

H. van Deurzen, G. Luisoni, P. Mastrolia, E. Mirabella, G. Ossola, T.P. (2013)

Interfaced with the Monte Carlo SHERPA



Outline

- Introduction and motivation
- 2 Amplitudes, trees and loops
- One-loop amplitudes
- 4 Higher loops
- 5 Summary & Conclusions

Higher-loop techniques

Integrand reduction can be extended to higher loop

```
P. Mastrolia, G. Ossola (2011)
```

- using multivariate polynomial division techniques
 Y. Zhang (2012); S. Badger, H. Frellesvig, Y. Zhang (2012-13);
 P. Mastrolia, E. Mirabella, G. Ossola, T.P. (2012-13)
- The Master Integrals are not all known at 2 or higher loops
- Recent developments in the computation of higher-loop integrals:
 - differential equations
 - J. Henn (2013); Henn, Smirnov, Melnikov (2013-14);
 - M. Argeri, S. Di Vita, P. Mastrolia, E. Mirabella, J. Schlenk, U. Schubert,
 - L. Tancredi (2014)
 - numerical techniques (e.g. SECDEC)
 - S. Borowka, G. Heinrich (2013-14)

Outline

- Introduction and motivation
- 2 Amplitudes, trees and loops
- One-loop amplitudes
- 4 Higher loops
- 5 Summary & Conclusions

Summary & Conclusions

- Automated one-loop calculations via integrand-reduction
 - allow to compute any one-loop integral in any QFT
 - are implemented in several public codes (e.g. CutTools, Samural, Ninja)
 - are producing phenomenological results for LHC (e.g. with GOSAM, FORMCALC [T. Hahn et al.])
- At higher loop
 - we have a framework which extends integrand reduction to any perturbative order
 - many interesting results from both analytic and numerical techniques
 - work is still in progress but things seem to be promising

THANK YOU FOR YOUR ATTENTION