$\operatorname{\mathsf{CKM}}\operatorname{\mathsf{Angle}}\phi_2\operatorname{\mathsf{From}}B\to\rho\rho\operatorname{\mathsf{Decays}}$

Pit Vanhoefer

Max-Planck-Institut für Physik

pvanhoef at mpp.mpg.de

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

1) Motivation

2a) Measurements of $\mathcal{B}(B^0\to\rho\rho)$

2b) Implication for ϕ_2

3)Outlook

CP Violation

Where did the anti-matter go?

weak interaction violates the combined symmetry C(charge)P(parity),

complex, unitary quark-mixing matrix, V_{CKM} (Cabibbo-Kobayashi-Maskawa):

quark flavor transition probabilies V_{ij} (W^{\pm} exchange).

succesfully testet BUT NOT able to produce observed asymmetry in our universe!!.

CPV Observables

4 free parameters(3 mixing angles, 1 complex phase) for 3 generations of quarks

Approx. represention of $V_{\rm CKM}$ in terms of the Cabibbo angle, $\lambda=\sin\theta_{\rm C}\approx 0.22$

$$V_{\rm CKM} \approx \mathcal{O} \left(\begin{array}{ccc} 1 & \lambda & \lambda^3 \\ \lambda & 1 & \lambda^2 \\ \lambda^3 & \lambda^2 & 1 \end{array} \right) + \mathcal{O}(\lambda^4) \qquad \text{unitarity} \rightarrow$$

 $V_{\text{CKM}}V_{\text{CKM}}^{\dagger} = \mathbf{1}$ $\sum_{i=1}^{3} V_{ij}V_{ik}^{*} = 0, j \neq k$

relevant relation for ${\cal B}$ meson decays

$V_{ud}V_{ub}^*$	+	$V_{cd}V_{cb}^*$	+	$V_{td}V_{tb}^*$	=	0
$\mathcal{O}(\lambda^3)$		$\mathcal{O}(\lambda^3)$		$\mathcal{O}(\lambda^3)$		

can be represented as a triangle in the complex plane ightarrow

sides with similar length \Rightarrow large CP violation

5 observables (3 angles, 2 sides) \Rightarrow over-constraint

confirm SM or find new physics

${\cal CP}$ Violation in the ${\cal B}$ System

$$\frac{N_{\bar{B^0}}(\Delta t, f_{CP}) - N_{B^0}(\Delta t, f_{CP})}{N_{\bar{B^0}}(\Delta t, f_{CP}) + N_{B^0}(\Delta t, f_{CP})} = \mathcal{A}_{CP}\cos(\Delta m\Delta t) + \mathcal{S}_{CP}\sin(\Delta m\Delta t) \, \left| , \, \Delta t = t' - t \right|$$

ϕ_2 and Mixing Induced \mathcal{CP}

• $\phi_2 = arg(\frac{V_{td}V_{tb}^*}{V_{ub}V_{ud}^*})$ accesible through mixing induced CP in $b \to u$ transitions,

$$\mathcal{S}_{CP} = \sin(2\phi_2), \quad \mathcal{A}_{CP} = 0$$

Penguin Pollution

At tree level: $S_{CP} = \sin(2\phi_2)$ and $A_{CP} = 0$.

BUT more amplitudes (penguins) can contribute

How the penguin distorts the tree level measurement

Pit Vanhoefer(MPI)

Recover ϕ_2

• extraction of $\Delta\phi_2$ with isospin analysis (remove penguin pollution) $\phi_2^{eff} = \phi_2 + \Delta\phi_2$

for unflavored isospin triplets, e.g. ρ,π

Bose statistics: \Rightarrow I=0,2 (final states);

- tree I=0,2;
- penguin: I=0 only (gluon; I=0)
 allows to formulate relations of the decay
 amplitudes A

e.g.
$$\bar{A}^{+-} = \mathcal{A}(\bar{B} \to \rho^+ \rho^-)$$

- $\frac{1}{\sqrt{2}}A^{+-} + A^{00} = A^{+0}$ 1 $\overline{4}^{+-} + \overline{4}^{00} = \overline{4}^{-0}$
- $\frac{1}{\sqrt{2}}\bar{A}^{+-} + \bar{A}^{00} = \bar{A}^{-0}$

• $A^{+0} = \overline{A}^{-0}$ (no penguin) \Rightarrow geometrical considerations reveal $\Delta \phi_2$ Pit Vanhoefer(MPI) ϕ_2 from $B^0 \to \rho \rho$ IMPRS Colloquium, 11.4.2014 7

$B \to VV$

 $\text{scalar} \rightarrow \text{vector vector } (\rho: J^{PC} = 1^{--}) \Rightarrow \text{three different polarization amplitudes}$

• $A_0 \rightarrow \text{longitudinal(LP):}$

pure
$$CP$$
 eigenstates $\eta_{CP} = +1$

•
$$A_{\pm 1} \rightarrow \text{transversal(TP):}$$

mixture of ${\cal CP}$ even and odd states

 $\eta_{CP} = +1, -1$

$$\mathcal{S}_{CP} = \eta_{CP} \sin(2\phi_2^{\text{eff}})$$

measure $f_L \Rightarrow$ separate longitudinal (CP-even) and tranvserse (CP-even&odd) polarization

fraction of LP: $f_L = \frac{|A_0|^2}{\sum |A_i|^2}$

Measuring ϕ_2

In $b \to u$ transitions (e.g. $B \to \pi \pi, \rho \rho, \ldots)$

- measurement of $\Delta t, q$ provides $\sin(2\phi_{2,eff}) = \sin(2(\phi_2 + \Delta \phi_2))$
- extraction of $\Delta \phi_2$ through isospin analysis possible but 2(sin)× 4($\Delta \phi_2$) = 8 fold ambiguity

In the $B\to\rho\rho$ system the SM predicts small penguin pollution

- $\phi_2 \text{ from } B^0 \to \rho^+ \rho^-$ (LP only)
- + $\mathcal{BR}(B^0\to\rho^0\rho^0)$ relatively very small

multiple solutions due to $\Delta\phi_2$ overlap \Rightarrow only 2 fold ambiguity

- current error on ϕ_2 dominated by the ρ system

Need: Branching Fractions, f_L and CPV parameters of:

$$B^0 \to \rho^+ \rho^-, B^0 \to \rho^0 \rho^0$$
 and $B^+ \to \rho^+ \rho^0$

ΔΦ

AĀ

Previous Measurements

Experiment	BELLE	BaBar
$\mathcal{BR}(\times 10^{-6})$	0.4±0.4±0.25	0.92±0.32±0.14
f_L	1(assumed)	$0.75 \pm 0.11 \pm 0.04$
\mathcal{A}_{CP}^{L}	-	$-0.2 \pm 0.8 \pm 0.3$
\mathcal{S}_{CP}^{L}	-	0.3±0.7±0.2
$Bar{B}$ pairs ($ imes 10^6$)	656.7	465

— two independent measurements —

d

Experiment	BELLE	BaBar
$\mathcal{BR}(\times 10^{-6})$	22.8 $\pm 3.8^{+2.3}_{-2.6}$ (*)	$25.5 \pm 2.1^{+3.6}_{-3.9}$
f_L	$0.941^{+0.034}_{-0.040}\pm0.030^{\ (*)}$	$0.992 \pm 0.024^{+0.026}_{-0.013}$
\mathcal{A}_{CP}^{L}	$0.16 \pm 0.21 \pm 0.08$	-0.01 \pm 0.15 \pm 0.06
\mathcal{S}_{CP}^{L}	$0.19 \pm 0.30 \pm 0.08$	$-0.17 \pm 0.20^{+0.05}_{-0.06}$
$Bar{B}$ pairs ($ imes 10^6$)	535(^(*) 200)	384

The Experimental Setup

Where the $B\mathbf{s}$ come from

- Υ states: $b\overline{b}$ bound states
- $\Upsilon(4S)$ exclusively into $B\bar{B}$ pairs
- $\Upsilon(4S): J^{PC} = 1^{--}$

•
$$B: J^{PC} = 0^{--}$$

 $\rightarrow B$ pair in p-wave

• asymmetric wave function

ightarrow Bs have opposite flavor:

continuum: $e^+e^- \rightarrow q\bar{q}$ (u,d,s,c)

gives large contribution

CP Violation Measurement

different decay time-dependency for B and \bar{B} decaying into a CP eigenstate

 $\frac{N_{\bar{B^0}}(\Delta t, f_{CP}) - N_{\bar{B^0}}(\Delta t, f_{CP})}{N_{\bar{B^0}}(\Delta t, f_{CP}) + N_{\bar{B^0}}(\Delta t, f_{CP})} = \mathcal{A}_{CP}\cos(\Delta m\Delta t) + \mathcal{S}_{CP}\sin(\Delta m\Delta t)$

• $\Upsilon(4S) \rightarrow$ entangled $B\bar{B}$ pair (\sim at rest in CMS) \Rightarrow opposite side flavor tagging possible

• asymmetric beam energies \Rightarrow boost of the CMS $\Rightarrow \Delta t \rightarrow \Delta z$ ($\Delta t \sim 1.5 ps$, $\Delta z \sim 100 \mu$ m)

Δt

$$\Gamma(\Delta t, q) = \frac{e^{-\Delta t/\tau_B}}{4\tau_B} \left(1 + (1 - 2w_l)q[\mathcal{S}_{CP}\sin(\Delta t\Delta m_d) + \mathcal{A}_{CP}\cos(\Delta t\Delta m_d)] \right)$$

2400 • tagging eff: $\sim 30\%$ 2200 Events / (0.5) 2000 (dominant dilution from misPID) 1800 1600 • wrong tag fraction included as a 1400 1200 binned dilution factor $1 - 2w_l$ 1000 800 600 400 200 • convoluted with resolution fct. asymmetry a) detector resolution b) smearing due to non primary tag-0 -10 10 $\Delta t [ps]$ side tracks

signal MC: $\phi_2^{\text{generated}} = 45^\circ \Rightarrow \mathcal{S}_{CP} = 1$

c) kinematic approx.,

Helicity Measurement

separate longitudinal (CP even) and transversal (CP even & odd) states

consider two signal components, fit $\cos(\theta_{Hel}) \rightarrow f_L$ (fraction of LP)

Reconstruction of $(B^0 \rightarrow \rho \rho)$

combine particles seen by detector

$B^0 \to \rho^0 \rho^0$
$ ho^0 ightarrow \pi^+\pi^-$

20000

18000

16000 14000

12000 10000

8000 6000

4000 2000

0

0.6

0.8

Ö

Events

 $\rho: m_0 \sim 770 \text{ MeV}, \Gamma \sim 150 \text{ MeV}$

 $X^{2}/ndf = 0.92$

 ρ mass

1.2 1.4 1.6

Μ₁(π,π) [GeV/c²]

What a difference two π^0 s make

Separate Signal from Background

multivariate (blind) analysis

- rare *B* decays are extremely BKG dominated: several sources -continuum: $e^+e^- \rightarrow q\bar{q}, q = u, d, s, c$ dominant -*B* decays with same final state: e.g. $B \rightarrow \pi\pi\pi\pi\pi, \rho\pi\pi, ...$ \rightarrow inteference needs to be considered!! (here systematics) -combinatorial BKG from other *B* decays
- hard cuts destroys also signal yield (rare decays)
 - \Rightarrow multidimensional fit:

(6D for $B\to \rho^0\rho^0$ and 8D for $B\to \rho^+\rho^-$)

- consider each background separately (17 for $B \to \rho^0 \rho^0$ and even more for $B \to \rho^+ \rho^-$)
- \Rightarrow simultanious fit of $\mathcal{B},~f_L$ (and CPV parameters for B $\rho^+\rho^-$)

full projection: $B \to \rho^0 \rho^0$ (data) Events / (0) 2500 2000 1500 1000 500 Normalised Residuals -0.1 -0.05 0.05 0.1 ∆E [GeV] $B \to \rho^+ \rho^-$ (MC) $\times 10^3$ Events / (0.01) Normalised Residuals -0.1 0.1 $\Delta E [GeV]$

Continuum Identification

- $e^+e^- \rightarrow q\bar{q}$, (q = u, d, s, c) gives biggest contribution ($N_{q\bar{q}}/N_{sig} \sim 1000$)
- combine $\mathcal{O}(10)$ eventshape-dependent variables with Fisher disciminant $o \mathcal{F}_{S/B}$

• include $\mathcal{F}_{S/B}$ in fit and apply loose cut \rightarrow reject $\sim 80\%~q\bar{q}$ events

BUT still huge contribution

 $B\bar{B}, q\bar{q}$; same normalisation

Result: $B^0 \to \rho^0 \rho^0$

6D fit to $\Delta E, \mathcal{F}_{S/B}, m_1(\pi^+\pi^-), m_2(\pi^+\pi^-), \cos\theta_{\text{Hel}}^1, \cos\theta_{\text{Hel}}^2$

PRD 89 072008

arXiv:1212.4015

 $\mathcal{B}(B^0\to\rho^0\rho^0)=(1.02\pm0.30\pm0.15)\times10^{-6}$, 3.4σ

 $f_L = 0.21^{+0.18}_{-0.22} \pm 0.15$

also 1^{st} evidence of $B^0
ightarrow f_0
ho^0$ (3.1 σ)

Signal enhanced projections

Pit Vanhoefer(MPI)

 $\phi_2 \text{ from } B^0 \to \rho \rho$

$\phi_2 \operatorname{from} B \to \rho \rho \operatorname{Decays}$

isospin analysis

inputs: Belle results

 $\phi_2 = (84.9 \pm 13.5)^\circ, \quad \Delta \phi_2 = (0 \pm 10.4)^\circ$

arXiv:1212.4015

Comparison with BaBar

BaBars uncertainty on $\phi_2(\alpha)$ (ho
ho system) $\sim 7^\circ$

Belle NEEDS UPDATES on $B^0 \to \rho^+ \rho^-$ and $B^+ \to \rho^+ \rho^0 !!$

 $B \to \rho^{\pm} \rho^{\mp,0}$

• previous measurements

Experiment	BELLE	BaBar
$\mathcal{BR}^{+-}(\times 10^{-6})$	$22.8 \pm 3.8^{+2.3}_{-2.6}$	$25.5 \pm 2.1^{+3.6}_{-3.9}$
f_{L}^{+-}	$0.941^{+0.034}_{-0.040}\pm0.030$	$0.992 \pm 0.024^{+0.026}_{-0.013}$
\mathcal{A}^{+-}_{CP}	$0.16 \pm 0.21 \pm 0.07$	$-0.01 \pm 0.15 \pm 0.06$
\mathcal{S}^{+-}_{CP}	$0.19 \pm 0.30 \pm 0.07$	$-0.17 \pm 0.20^{+0.05}_{-0.06}$
$N_{B\bar{B}}\times 10^6$	535*	384
$\mathcal{BR}^{\pm 0}(\times 10^{-6})$	$31.7 \pm 7.1^{+3.8}_{-6.7}$	$23.7 \pm 1.4 \pm 1.4$
$f_L^{\pm 0}$	$0.948 \pm 0.106 \pm 0.021$	$0.950 \pm 0.015 \pm 0.006$
${\cal A}_{CP}^{\pm 0}$	$0.00 \pm 0.22 \pm 0.03$	$0.054 \pm 0.055 \pm 0.010$
$N_{B\bar{B}} \times 10^6$	85	465

 * : Belle only updated CP parameters; \mathcal{BR}, f_L from 275 $B\bar{B}$ pairs

Outlook

Pit Vanhoefer(MPI)

Outlook II

Outlook II

Current Status of ϕ_2

combine measurements from $B \to \pi\pi, B \to \rho\rho$ and $B \to \rho\pi \left| \phi_2 = (88.7^{+4.6}_{-4.2})^{\circ} \right|$

Summary & Outlook

- presented measurement of $\mathcal{BR}(B^0 \to \rho^0 \rho^0)$ (acc. by PRD) $\mathcal{BR}(B^0 \to \rho^0 \rho^0) = (1.02 \pm 0.30 \pm 0.15) \times 10^{-6}$. 3.4σ $f_L = 0.21^{+0.18}_{-0.22}(stat.) \pm 0.15(syst.)$
- and used it in isospin analysis

 $\phi_2 = (84.9 \pm 13.5)^{\circ}$

- currently working on the final update of $B^0 \to \rho^+ \rho^-$

 \rightarrow measurement of branching fraction, polarization and CP asymmetries.

BACKUP

Systematic Uncertainties

interference with $a_1\pi$

Category	$\delta \mathcal{B}(B^0 \to \rho^0 \rho^0) (\%)$	δf_L
$N(B\bar{B})$	1.4	_
Tracking	1.4	_
Particle identification	2.5	_
Mis-reconstruction fraction	1.3	< 0.001
$ ho^0$ shape	0.2	< 0.001
Model shape	5.1	0.08
Histogram shape	5.2	0.03
$\mathcal{B}(B^0 \to a_1 \pi)$	0.4	0.03
$\mathcal{B}(B^0 \to b_1 \pi)$	<0.1	< 0.001
$\mathcal{B}(B^0 \to a_2 \pi)$	<0.1	< 0.001
Fit bias	1.9	0.03
Interference	19.2	0.03
$ ho^0\pi\pi$ helicity	6.3	0.05
Total	22.0	0.11

likelihood scan incl. syst.

 $B \rightarrow V$

naive SM predictions

amplitude ratios:

$$\mathbf{A_0}:\mathbf{A_+}:\mathbf{A_-}=1:\tfrac{m_V}{m_B}:\tfrac{m_V^2}{m_B^2}$$

fraction of longitudinal polarized states
$$f_L$$
: $\left| \mathbf{f_L} = \frac{|\mathbf{A}_0|^2}{|\mathbf{A}_0|^2 + |\mathbf{A}_+|^2 + |\mathbf{A}_-|^2} \sim 1 - \frac{\mathbf{m}_V^2}{\mathbf{m}_B^2} \right|$

theoretical status:

LP (A_0)

calculable using QCD factorization in the heavy quark limit

Beneke, Buchalla, Neubert, Sachrajda: arXiv:hep-ph: 0104110, 9905312, 0006124

TP

suppressed by powers of (Λ_{QCD}/m_B) amplitudes do NOT factorize \Rightarrow hard to calculate (divergences)

M. Beneke, J. Rohrer and D. Yang : arXiv:hep-ph: 0612290

 $B \rightarrow VV$

measurements

tree dominated: ($\rho, \omega, ...$)

 $f_L \sim 1$ 🗸

penguin dominated: (K^{\ast},ϕ,\ldots)

 $f_L \sim 0.5$?

e.g. K^* naive expectation: $f_L \sim 1 - (\frac{m_{K^*}}{m_B})^2 \sim 0.97$ \rightarrow "helicity puzzle"

topic of ongoing research

Longitudinal Polarization Fraction (fL)

Continuum Identification

What I use.

- momentum sum relative to thrust axis L_2
- angle between the 2 Bs thrust axis
- $\bullet \ B \ {\rm flight} \ {\rm direction}$
- fox wolfram moments

cut: $\cos(TB|TO) < 0.9$ removes $\sim 60\% q \bar{q}$

Model for $\mathcal{BR}(B^0\to\rho^0\rho^0)$

• signal MC(*L* pol)

• neutral charmless decays

Rec: PID Criterias

- information from different subdetectors ightarrow likelihood ratios $\mathcal{LR}_{i/j}$
- charged tracks from signal MC: standard set of cuts \rightarrow syst. are known

• require that tracks (somehow) origin at the IP: |dr| < 0.5cm & |dz| < 5cm

Pit Vanhoefer(MPI)

Rec: Charm and Strange Vetos

• removes signal like features comming from background with similar final state topology, e.g. $B^0 \rightarrow D^-(\pi^-\pi^+\pi^-)\pi^+$ or wrong PID; $(\Delta E = E_{Brec} - E_{beam})$

Rec: Charm and Strange Vetos

Cuts on $M(\pi\pi)$:

 $D^0: 1.86484 \pm 0.02 [GeV/c^2]$ $K_s: 0.493677 \pm 0.018 [GeV/c^2]$

Cuts on $M(\pi\pi\pi)$: $D^{\pm}: 1.8696 \pm 0.02[GeV/c^2]$ $D_s^{\pm}: 1.96849 \pm 0.02[GeV/c^2]$

Cuts on $M(\mu\mu)$: $J\Psi: 3.0969 \pm 0.04 [GeV/c^2]$

 \rightarrow loss in $\epsilon_{rec} < 4\%$

Rec: BCS

• BCS: best candidate selection

Pit Vanhoefer(MPI)

Measurement of $\mathcal{BR}(B^0\to\rho^0\rho^0)$

Extraction of $\mathcal{BR}(B^0 \to \rho^0 \rho^0)$ and f_L

6D extended unbinned likelihood fit with the variables
$$\Delta E, \quad 2 \times m_{\pi^+\pi^-}, \quad \mathcal{F}, \quad 2 \times \cos \theta_{\mathrm{Hel}}$$
$$\Delta E \equiv E_{B_{rec}} - E_{beam}$$
The model consists of **17 components** which are:
$$- 2 \times \operatorname{signal} (L \operatorname{pol}, T \operatorname{pol}); \qquad \mathrm{MC}$$

$$- 2 \times \operatorname{misreconstructed signal} (L \operatorname{pol}, T \operatorname{pol}); \qquad \mathrm{MC}$$

$$- \operatorname{continuum} (e^+e^- \to q\bar{q}); \qquad \text{data taken at } \sqrt{s} = 10.50 GeV < m(\Upsilon(4S))$$

$$- 4 \times B\bar{B}: \operatorname{charm and charmless} B^0(B^{\pm}) \operatorname{decays}; \qquad \mathrm{MC}$$

$$- 8 \times \operatorname{peaking BKG} (4\pi \operatorname{s final states}); \qquad \mathrm{MC}$$

$$\pi^+\pi^-\pi^+\pi^-, a_1^{\pm}\pi^{\mp}, a_2^{\pm}\pi^{\mp}, b_1^{\pm}\pi^{\mp}, f_0 f_0, f_0 \pi^+\pi^-, \rho^0 \pi^+\pi^-, f_0 \rho^0. \quad \mathrm{BR \ known}$$

Correlations!

sometimes correlated multidimensional \mathcal{PDF} needed e.g. $a_1\pi$ or $f_0\rho^0$ (peaking bkg: ΔE shape similar to signal)

Motivation

 $B \to \text{light } VV \qquad (|B^0\rangle = |\bar{b}d\rangle)$

light hadronic vector states: ho, $\omega, a_1, b_1, \phi, K^*$, ...

- \Rightarrow rich field of physics with different types of amplitudes tree, QCD/EW penguin, weak annihilation
- but: light \leftrightarrow rare(CKM suppressed)
 - \Rightarrow experimental difficulties
- extract flavor parameters, e.g. CP asymmetries
- find (hints of) new physics
- helps understanding
 - a) QCD, b) helicity structure, c)...

Toy MC Studies for $\mathcal{BR}(B^0 \to \rho^0 \rho^0)$

Estimate the fitter's ability to find signal with Toy MC, expected Nr of events:

- signal: \sim 100
- 4 π s ff: \sim 650

(using world averages)

- $B\bar{B}$: \sim 4500
- all: \sim 110000

Fit Region:

 $\begin{array}{ll} 5.27 < M_{\rm bc} < 5.29 & [GeV/c^2] \\ -0.1 < \Delta E < 0.1 & [GeV] \\ 0.52 < m(\pi^+\pi^-) < 1.15 [GeV/c^2] \\ -1 < \cos(\theta_H) < 1 \end{array}$

 $\begin{array}{c} \left(\begin{array}{c} 0 \\ 2500 \\ \\ 2500 \\ \\ 1000 \\ \\ 1000 \\ \\ 1000 \\ \\ 500 \\ \\ 100$

-0.05

-0.1

proj. into ΔE .

0.05

 ΔE [GeV]

01

 $\mathbf{0}$

Toy MC Studies for $\mathcal{BR}(B^0\to\rho^0\rho^0)$

• performed fits on 300 toy MC samples

 \Rightarrow on the edge of a observation with a 3 σ significance

Toy MC Studies for $\mathcal{BR}(B^0\to\rho^0\rho^0)$

• performed fits on 300 toy MC samples

 \Rightarrow measurement of f_L posibble

Flavor Tagging

towards CPV measurement

 $\Upsilon(4S) \rightarrow \operatorname{coherent} B\bar{B}$ pair

one $B \equiv B_{CP}$ decays into final state of interest.

use flavor specific decays of the other $B \equiv B_{tag}$ to determine the flavor of B_{CP} ; e.g.

Model for $\mathcal{BR}(B^0\to\rho^0\rho^0)$

Helicity: weighted with reconstruction effiency histogram

• signal MC(*L* pol)

• signal MC(T pol)

