The Light Channel of the CRESST Experiment

Anja Tanzke

Max-Planck-Institute for Physics Technische Universität München

May 9th 2014

Table of Contents

1 Introduction to the CRESST Experiment

2 Light Channel

3 Foil

- Reflectivity of the Foil
- Scintillation of the Foil

4 Results

Direct Dark Matter Search with the CRESST Experiment

CRESST (Cryogenic Rare Event Search with Superconducting Thermometers)

- Direct detection of Dark Matter in the form of
 WIMPs (Weakly Interacting Massive Particles) via
 elastic scattering off nuclei
- located at the LNGS (Laboratori Nazionali del Gran Sasso) in Italy
- Scintillating CaWO₄
 crystals as target material

CRESST Detection principle

- Energy depositions in the crystal mainly excite **phonons**
 - temperature rise in the crystal $(\mathcal{O}(\mu K)) \rightarrow$ detectors operated at **mK temperatures**
- small fraction of deposited energy produces scintillation light
 → separate light detector
- both signals measured with
 Transition Edge Sensors (TES)
 made of a W film
- change of resistance in the film measured with a SQUID based readout

- Detector module: Phonon detector + Light detector surrounded by a reflective and scintillating housing
- simultaneous measurement of
 - **Phonon Channel**: deposited energy in the crystal (independent of type of particle)
 - Light Channel: scintillation light
 → allows discrimination of
 different types of particles

Event discrimination

- Phonon signal = Energy deposited in the crystal
- Light signal used to discriminate different types of interactions

Light Yield = light signal/phonon signal

• Light Yield characteristic for each event type

 excellent discrimination between dominant background (e⁻-recoils) and potential signal events (nuclear recoils)

A. Tanzke (MPP/TUM)

Light Channel of CRESST

Event discrimination

- Phonon signal = Energy deposited in the crystal
- Light signal used to discriminate different types of interactions

Light Yield = light signal/phonon signal

- Light Yield characteristic for each event type
- WIMP search region (ROI) including O, Ca and W bands below 40keV

 excellent discrimination between dominant background (e⁻-recoils) and potential signal events (nuclear recoils)

Light Channel of CRESST

Light Channel Energy Resolution

Width of the bands is mainly determined by the light channel energy resolution

• Energy resolution of a typical CRESST detector module

Light Channel Energy Resolution

Width of the bands is mainly determined by the light channel energy resolution

• Energy resolution of a typical CRESST detector module • Light channel energy resolution improved by a factor of 5

Improved light channel's energy resolution increases discrimination power

A. Tanzke (MPP/TUM)

Light Channel of CRESST

- Energy resolution of the light detector ΔE depends on the fraction of recoil energy that is absorbed by the light detector pq
- Energy fraction absorbed by the light detector pq
 - energy fraction transformed into scintillation light p
 - fraction of scintillation light absorbed by the light detector q
 - p and q are difficult to distinguish \rightarrow only pq can be determined
 - absolute calibration of the light detector with an X-ray (^{55}Fe) to determine pq
- Energy resolution of the light detector ΔE
 - determined for small energies
 - also depends on other parameters (e.g. the transition of the TES) than *pq*, but can be corrected for these

Energy fraction absorbed by the light detector pq for different modules currently running in CRESST (Run33)

larger fraction of absorbed light pq
ightarrow better energy resolution ΔE

produced scintillation light

Foil VM2002

Reflective and scintillating multi-layer polymeric foil VM2002

- Reflectivity measurement at 300K
- cut-off wavelength at 375nm
- Emission spectrum of CaWO₄ (at 300K)
- Absorption of SOS (silicon on sapphire) Light Detector (at 300K)

Foil Lumirror

Reflective Foil Lumirror

- Reflectivity measurement at 300K
- cut-off wavelength at 325nm
- fluorescence contribution between 320 and 420 nm

- Reflectivity can change when foil is cooled down to mK temperatures
- Compare the reflectivity at mK temperatures:
 - 2 cryogenic measurements with the same detector module (one with each foil)
 - everything except the foil stays the same

Result

- VM2002: *pq* = 1.58%
- Lumirror: *pq* = 1.42%

Lumirror foil reflects 10% less light of CaWO4 at mK temperatures

Background from α contamination on surfaces

- alpha contamination on surfaces inside the detector module can induce background
- main source is ²²²*Rn* from ambient air which deposits on the detector and the housing
- ²²²*Rn* decays to ²¹⁰*Po*, which induces a background by its decay ²¹⁰*Po* \rightarrow ²⁰⁶ *Pb*(103*keV*) + α (5.3*MeV*)

Scintillation as veto for surface α decays

- ullet alpha hitting the foil ightarrow additional scintillation light
- Foil events can be cut due to a different pulse shape

Improvement possible with a material scintillating better than the foil VM2002

- **Parylene C** is a good scinillator at room temperature
- clean raw material available

- Foil can be coated via polmerization (commercial process)
- additional cleaning during production process
- additional advantage: Reset of the "radon-history" of the foil
 - Exposure of foil to radon contaminated air cannot be controlled (comercial product)
 - Coat the foil with a homogeneus Parylene layer
- \rightarrow Measurement of scintillation of Parylene C at mK temperatures

Scintillation of Parylene C

Setup to measure the scintillation of Parylene C at mK temperatures

- Energy calibration with an X-ray source (⁵⁵Fe)
- Sapphire disk to prevent alphas hitting the light detector directly

Result

- a 5.6MeV alpha produces 4.7keV scintillation light in 12μ m Parylene
- comparison: a 5.6MeV alpha produces 2keV scintillation light in the foil VM2002
- \rightarrow Parylene C scintillates more than twice as well as the foil VM2002

- due to low count rates foil events can only be measured in CRESST
- 7 modules in the current CRESST Run (Run33) were equipped with Parylene coated foil

• Comparison of uncoated foil and Parylene coated foil

- 2 modules with the same module design
- both are equipped with an X-ray source for the absolute calibration of the light detector
- module 1: equipped with uncoated VM2002 foil
- module 2: equipped with a VM2002 foil coated with $10\mu m$ Parylene

Module with VM2002 Foil (uncoated)

a foil event with 100keV recoil energy produces 0.78keV detected light

A. Tanzke (MPP/TUM)

Module with Parylene coated Foil

a foil event with 100keV recoil energy produces 1.45keV detected light

A. Tanzke (MPP/TUM)

May 9th 2014 21 / 23

Comparison

foil event with 100keV recoil energy produces 0.78keV detected light

foil event with 100keV recoil energy produces 1.45keV detected light

Result

- Parylene coated foil produces twice as much light
- ightarrow foil events are higher in the light yield-energy plane

A. Tanzke (MPP/TUM)

Light Channel of CRESST

- Resolution of the light channel is improved with more detected light
- VM2002 foil is (up to now) the most reflective foil for CaWO₄
- Parylene C is a good scintillator at mK temperatures
- Scintillation of the foil can be improved with a Parylene coating

Backup

Radon decay chain

