my favorite topic: CRESST - Heading for new Dark Matter Results

Florian Reindl (MPP Munich)

Particle Physics School Munich Colloquium, June 2014

Direct Dark Matter Search with the CRESST Experiment

- Cryogenic Rare Event Search with Superconducting Thermometers
- Weakly Interacting Massive Particle

CRESST

• aims for a WIMP detection via their elastic scattering off nuclei.

• uses scintillating CaWO₄ crystals as target material.

CRESST Detectors - Working Principle

- $\bullet\,$ particle interactions in the crystal $\rightarrow\,$ mainly excitation of phonons
- temperature rise ($\mathcal{O}(\mu K)$) is detected with W thermometers (TES)
- \rightarrow measurement of deposited energy (few keV)

CRESST Detectors - Working Principle

- $\bullet\,$ particle interactions in the crystal $\rightarrow\,$ mainly excitation of phonons
- temperature rise $(\mathcal{O}(\mu K))$ is detected with W thermometers (TES)
- ightarrow measurement of deposited energy (few keV)
- $\bullet\,$ small fraction of deposited energy $\rightarrow\,$ scintillation light
- $\rightarrow\,$ add cryogenic light detector $\rightarrow\,$ detector module

CRESST Detectors - Working Principle

- $\bullet\,$ particle interactions in the crystal $\rightarrow\,$ mainly excitation of phonons
- temperature rise $(\mathcal{O}(\mu K))$ is detected with W thermometers (TES)
- ightarrow measurement of deposited energy (few keV)
- $\bullet\,$ small fraction of deposited energy $\rightarrow\,$ scintillation light
- $\rightarrow\,$ add cryogenic light detector \rightarrow detector module

reflective bronze holding clamps W thermometer

CaWO₄ target crystal (300g)

light / absorber

W thermometer

reflective and scintillating foil

light detector

3

2

phonon detector

CRESST Detectors - Event-by-Event Discrimination

light yield =
$$\frac{\text{light signal}}{\text{phonon signal}}$$

Different event types have a **characteristic** light yield.

CRESST Detectors - Event-by-Event Discrimination

light yield =
$$\frac{\text{light signal}}{\text{phonon signal}}$$

Different event types have a **characteristic** light yield.

excellent discrimination between:

- e⁻-recoils: dominant radioactive background
- nuclear recoils: potential signal events

The Previous CRESST Run 32

- extensive physics run between June 2009 and April 2011
- 8 CaWO₄ modules used for Dark Matter analysis
- total net exposure (after cuts): 730 kg days

- 67 events observed in WIMP search regions
- maximum likelihood analysis
- Results from 730 kg days of the CRESST-II Dark Matter Search Eur. Phys. J. C (2012) 72-1971

Bck. Induced by 210 Po \rightarrow 206 Pb (103 keV) + α (5.3 MeV)

Bck. Induced by ²¹⁰Po \rightarrow ²⁰⁶Pb (103 keV) + α (5.3 MeV)

light signal

phonon (and) light signal

no signal

- decay inside clamp material
- e decay on or slightly below surface of clamp
 - (a) α hitting clamp \rightarrow **no** scintillation light

- decay inside clamp material
- decay on or slightly below surface of clamp

no signal

- (a) α hitting clamp \rightarrow **no** scintillation light
- (b) α hitting foil \rightarrow additional scintillation light from foil (with different pulse shape)

α w

- decay inside clamp material
- e decay on or slightly below surface of clamp
 - (a) α hitting clamp \rightarrow **no** scintillation light
 - (b) α hitting foil \rightarrow additional scintillation light from foil (with different pulse shape)

The Current Run 33 - Detector Upgrade

Run 33:

- started in July 2013
- 18 modules: \sim 5kg target mass
- 12 conventional modules
- 6 modules with active recoil veto (three different new designs)

The Current Run 33 - Detector Upgrade

Run 33:

- started in July 2013
- 18 modules: \sim 5kg target mass
- 12 conventional modules
- 6 modules with active recoil veto (three different new designs)

This talk: Focus on single module: TUM40

- 29kg days of exposure
- nonblinded data set taken from August to December 2013

Conventional vs. Stick Design

TUM40 - Veto of Surface Backgrounds

exposure: 29 kg-days

TUM40 - Veto of Surface Backgrounds

exposure: 29 kg-days

TUM40 - Radiopurity and Energy Resolution

- $\bullet\,$ crystal growth at TUM $\rightarrow\,$ improvement of radiopurity by a factor 2-10
- energy resolution: $\sigma < 100 {\rm eV}$
- γ -lines from cosmogenic activation
- γ -lines match with tabulated values (Δ <5eV)

TUM40 - Trigger Threshold

- \bullet very low threshold: ${\sim}600 eV$
- Iong-term stability

TUM40 - Cut Efficiencies - Determination

TUM40 - Cut Efficiencies - Result

• no time dependence (= stable noise conditions)

TUM40 - Summary

- efficient veto of recoil backgrounds
- best radiopurity of all crystals up to now
- very good energy resolution
- very low trigger threshold
- $\rightarrow~$ low threshold analysis

Recoil Rates and Spectrum

total interaction rate:

differential rate (counts per kg, day and keV recoil energy):

Yellin Methods

classic way

- $\bullet\,$ number of expected events $\leftrightarrow\,$ number of observed events
- $\rightarrow\,$ Poissonian probabilities yield limit on WIMP-nucleon cross-section for each WIMP mass
- but in case of background: too conservative

Yellin

• also take spectral information of expected signal into account

Yellin Maximum Gap

• Generalization to *optimum interval*: Do not only consider largest gap ($N_{events} = 0$), but also largest interval with $N_{events} = 1,2,3...$

ightarrow optimum interval method was used for this analysis

Acceptance Region

explained on the basis of simulated data

WIMP Parameter Space

Conclusion and Perspectives

TUM40:

- new working designs with efficient active recoil veto
- new crystal with significantly improved radiopurity
- $\rightarrow\,$ New WIMP parameter space explored with a single detector and 29kg days of exposure

@Ringberg: Real Limit

Backup

Origin of ²⁰⁶Pb Recoil Background

- ${\scriptstyle \bullet} \,$ absorption of $^{222} {\rm Rn}$
- $\rightarrow~^{210}\text{Po}$ has to build up first \rightarrow increasing rate

- direct deposition of 210 Po (in coating of clamps)
- $\rightarrow\,$ decreasing rate

Origin of ²⁰⁶Pb Recoil Background

• absorption of ²²²Rn

 $\rightarrow~^{210}\text{Po}$ has to build up first \rightarrow increasing rate

observation

- increasing rate at low energies (<<100keV)
- \bullet decreasing rate at full recoil energy (\sim 100keV)
- $\rightarrow\,$ both origins contribute
- $\rightarrow\,$ rate at low energies dominated by $^{222}\mathrm{Rn}$

- direct deposition of ²¹⁰Po (in coating of clamps)
- \rightarrow decreasing rate

Experimental setup at Gran Sasso Underground Laboratory

Transition Edge Sensor (TES)

Parylene Coating of Reflective and Scintillating Foil

- Exposure of foil to radon-contaminated air cannot be controlled (commercial product).
- strategy: cover/seal foil with Parylene to reset the foils "Rn-history"
- Parylene scintillates (twice as well as the foil)
- clean raw material available

backup slide: 5

$^{\rm 210}{\rm Pb}$ Activity of Tin

K. Schäffner, PhD Thesis, 2013

turn a piece of tin into a cryodetector

- tin is source and absorber
- count number of ²¹⁰Po-decays
- \rightarrow limit: tin: < 28.2mBq/kg

backup slide: 7

backup slide: 7

- shape of energy spectra of γ -leakage and possible WIMP signal seem compatible
- \rightarrow underestimation of γ -leakage?

- shape of energy spectra of $\gamma\text{-leakage}$ and possible WIMP signal seem compatible
- \rightarrow underestimation of γ -leakage?

- γ-leakage appears at high light yields
- possible WIMP signal at low light yields
- $ightarrow \ \gamma\mbox{-leakage}$ ruled out as explanation for the excess

but

Spectral Distribution of Signal Events The other way round:

 Only the Pb recoil background has similar light yield as the possible WIMP signal

The other way round:

 energy spectrum of Pb recoils incompatible with possible WIMP signal

 Only the Pb recoil background has similar light yield as the possible WIMP signal

Conclusion:

- Simultaneous measurement of phonon and light is crucial to discriminate a possible WIMP signal from background.
- The excess can not be explained with the known backgrounds alone.

