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String theory. . .

I string theory is a quantum gravity→ spacetime is not fixed

I it should evolve from the theory itself

PROBLEM:
“usual” implementations of string theory describe
dynamic of strings in a certain background spacetime

SOLUTION:

1. pick a spacetime compatible with string theory
2. use it as background
3. describe strings moving in the background
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1. parameterize “shape”
of background

2. assign energy to
each background

3. find minima

10500 backgrounds [2, 3]
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SUGRA in a nutshell

I low engery effective theory for (super) string theory

I here the NS/NS sector only

SNS =

∫
dDx
√

ge−2φ
(
R+ 4∂µφ∂µφ−

1
12

HµνρHµνρ

)
I Einstein-Hilbert like part = general relativity

I 2-form gauge field Bµν with

I field strength Hµνρ = ∂[µBνρ]

∼ Einstein-Maxwell theory→ point particles

I backgrounds solve SNS’s field equations
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Strings have a different perspective [4]:

large
volume

limit

I closed strings also wind around the torus→ T-duality

circles with radius

R

and
1/R

are identical

I new interesting properties like non-commutativity
I compactifications lead to gauged SUGRA

I moduli stabilization
I effective cosmological constant
I spontaneous SUSY breaking
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√
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X M =
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x̃i x i
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2 log
√

g
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′∂Nφ

′ − ∂M∂NHMN − 4HMN∂Mφ
′∂Nφ

′ + 4∂MHMN∂Nφ
′
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1
8
HMN∂MHKL∂NHKL −

1
2
HMN∂NHKL∂LHMK

∂M =
(
∂̃ i ∂i

)

HMN =

(
gij − BikgklBlj −Bikgkj

g ikBkj g ij

)



Gauge transformations and the strong constraint [7, 8]

I generalized Lie derivative combines
1. diffeomorphisms

2. B-field gauge transformations

3. β-field gauge transformations

LξHMN = ξP∂PHMN + (∂MξP − ∂Pξ
M)HPN + (∂NξP − ∂Pξ

N)HMP

Lξφ′ = ξM∂Mφ
′ +

1
2
∂Mξ

M

I closure of this algebra needs Lξ1Lξ2 − Lξ2Lξ1 = Lξ3

with ξ3 = [ξ1, ξ2]C (C-bracket)

I only possible when strong constraint holds

∂M∂
M · = 0

}
available in SUGRA
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Gauged SUGRA [10, 11] and its vaccua

I DFT action + Scherk-Schwarz ansatz gives rise to

Seff =

∫
dx (D−d)√−ge−2φ

(
R+ 4∂µφ∂µφ−

1
12

HµνρHµνρ

− 1
4
HMNF MµνF N

µν +
1
8

DµHMNDµHMN − V
)

with scalar potential

V = −1
4F

KL
I FJKL H

IJ + 1
12FIKMFJLNHIJHKLHMN

I maximally symmetric vacuum = Minkowski, dS, or AdS
I for Minkowski e.o.m for vacuum reduce to

0 = Rµν , V = 0 and KMN = δV
δHMN

∼ 0

I additional constraints on covariant fluxes FIJK
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Covariant fluxes as classification tool

I covariant fluxes FIJK combine

1. geometric fluxes f and H-flux (known from SUGRA)

2. non-geometric fluxes Q and R

I find fluxes which fulfill all constraint discussed so far

I solution for D − d = 3 (non-vanishing fluxes)

H123 = Q23
1 = H and f 2

31 = f 3
12 = f

I three different cases

1. H = 0 and f 6= 0: Solvmanifold, known from SUGRA

2. H 6= 0 and f = 0: T-dual version of 1.

3. H 6= 0 and f 6= 0: genuinely non-geometric background,
called double elliptic
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I fibration of T 2 over a S1 base with coordinate x

x

τ(x) =
τ(0) cos(fx)− sin(fx)
τ(0) sin(fx) + cos(fx)

ρ(x) =
ρ(0) cos(Hx)− sin(Hx)
ρ(0) sin(Hx) + cos(Hx)

I T 2 parameterized by ρ and τ (functions of x)
I fixed point of twist is ρ(0) = τ(0) = i
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Moduli stabilization

I scalar potential for fiber moduli ρ(0) = ρ and τ(0) = τ

I minimum at fixed point of twist with Vmin = 0 (Minkowski)
I mass terms for ρ and τ

modulus ρR ρI τR τI

mass 2|H| 2|H| 2|f | 2|f |

I H and f ∈ {1/6, 1/4, 1/3, 1/2} are quantized
I volume ρI of fiber torus ≈ (ls)2

→ no large volume limit!

I closely related the asymmetric orbifold [12, 13]
I still 5 flat directions, e.g. radius of base R
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not in scope of SUGRA or generalized geometry
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We have found a background
I without large volume limit
I stabilizes additional moduli
I generalized metric fulfills the strong constraint

not in scope of SUGRA or generalized geometry

BUT, looking more closely, we see
I one Killing vector which violates the strong constraint

K I=
(

0 − 1
2 (Hx3+f x̃3) 1

2 (Hx2+f x̃2) 1 − 1
2 (fx

3+Hx̃3) 1
2 (fx

2+Hx̃2)
)

→ patched by diffeomorphisms, B-field and β-transformations
I algebra of Killing vectors still closes

at the border of DFT’s scope
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Summary, conclusions and outlook

SUGRA
CY

Flux comp.

DFT + SC

H = 0 and f 6= 0
H 6= 0 and f = 0
H 6= 0 and f 6= 0

new applications, e.g. inflation,
non-associative geometry[14] , . . .

Enh
an

ce
dD

FT
?



Thank you for your attention.
Do you have any questions?



Group manifold = Scherk-Schwarz ansatz in doubled coordinates

1. Homogenious space in 2(D − d) dimensions

I space “looks” at every point the same
I 2(D − d) linear independent Killing vector K J

I

LK J
I
HMN = 0 and LK J

I
φ′ = 0

I infinitesimal translations LK J
I

form group GL

2. Gauge transformations

I map space to itself by

LU M
N
HIJ = −FIMLU M

N HLJ −FJMLU M
N HIL

I infinitesimal translations LU M
N

form group GR

I structure coefficients FIJK = covariant fluxes
I closure of GR → constraints on FIJK
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