Stringy Geometries in the Context of Double Field Theory

Falk Haßler based on 1401.5068 with Dieter Lüst

Arnold Sommerfeld Center LMU Munich

June 13, 2014

- \blacktriangleright string theory is a quantum gravity \rightarrow spacetime is not fixed
- it should evolve from the theory itself

PROBLEM:

"usual" implementations of string theory describe dynamic of strings in a certain **background** spacetime

- $\blacktriangleright\,$ string theory is a quantum gravity \rightarrow spacetime is not fixed
- it should evolve from the theory itself

PROBLEM:

"usual" implementations of string theory describe dynamic of strings in a certain **background** spacetime

SOLUTION:

- 1. pick a spacetime compatible with string theory
- 2. use it as background
- 3. describe strings moving in the background

- ► string theory is a quantum gravity → spacetime is not fixed
- it should evolve from the theory itself

PROBLEM:

"usual" implementations of string theory describe dynamic of strings in a certain **background** spacetime

SOLUTION:

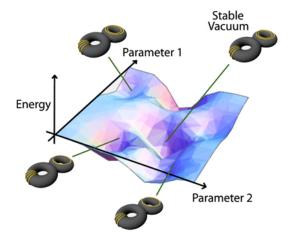
- 1. pick a spacetime compatible with string theory
- 2. use it as background
- 3. describe strings moving in the background

... and the string theory landscape [1].

- How to choose such a background?
- Is (are) there one, ten, hunderts or billions of them?

... and the string theory landscape [1].

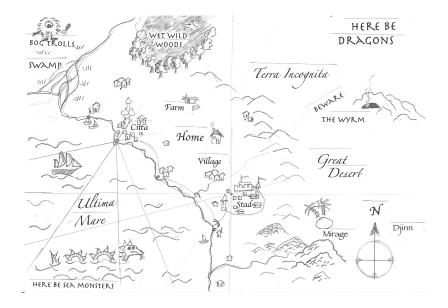
- How to choose such a background?
- Is (are) there one, ten, hunderts or billions of them?



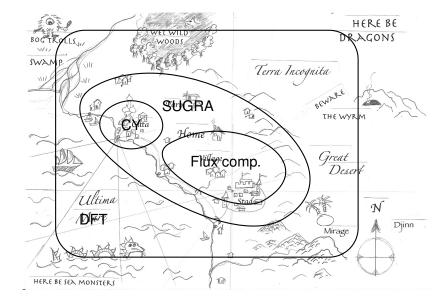
- 1. parameterize "shape" of background
- assign energy to each background
- 3. find minima

10⁵⁰⁰ backgrounds [2, 3]

How we explore this landscape?



How we explore this landscape?



SUGRA in a nutshell

- Iow engery effective theory for (super) string theory
- here the NS/NS sector only

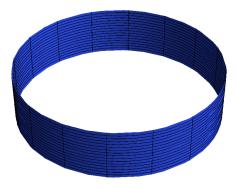
$$\mathcal{S}_{
m NS} = \int \mathrm{d}^D x \, \sqrt{g} e^{-2\phi} \left(\mathcal{R} + 4 \partial_\mu \phi \partial^\mu \phi - rac{1}{12} H_{\mu
u
ho} H^{\mu
u
ho}
ight)$$

- Einstein-Hilbert like part = general relativity
- 2-form gauge field $B_{\mu\nu}$ with

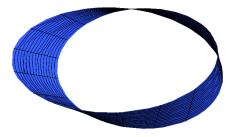
• field strength
$$H_{\mu\nu\rho} = \partial_{[\mu}B_{\nu\rho]}$$

 \sim Einstein-Maxwell theory \rightarrow point particles

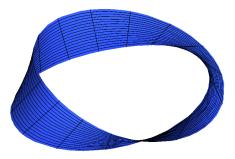
backgrounds solve S_{NS}'s field equations



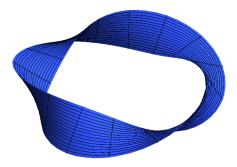
- geometric twists are possible
- B_{ij} fields connected by gauge transformations



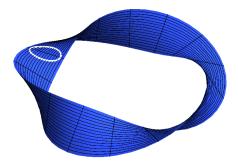
- geometric twists are possible
- B_{ij} fields connected by gauge transformations



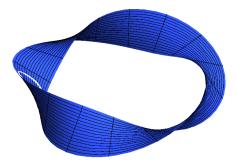
- geometric twists are possible
- B_{ij} fields connected by gauge transformations



- geometric twists are possible
- B_{ij} fields connected by gauge transformations

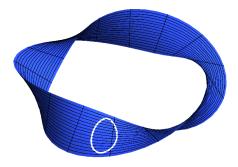


- geometric twists are possible
- B_{ij} fields connected by gauge transformations

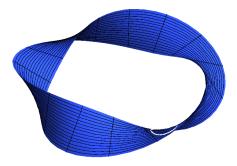


- geometric twists are possible
- B_{ij} fields connected by gauge transformations

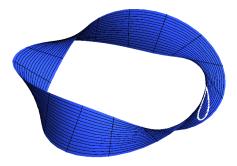
- geometric twists are possible
- B_{ij} fields connected by gauge transformations



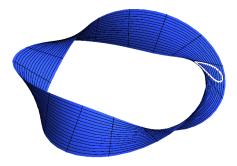
- geometric twists are possible
- B_{ij} fields connected by gauge transformations



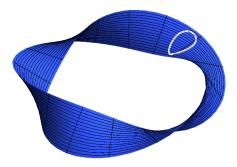
- geometric twists are possible
- B_{ij} fields connected by gauge transformations



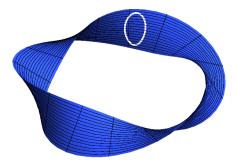
- geometric twists are possible
- B_{ij} fields connected by gauge transformations



- geometric twists are possible
- B_{ij} fields connected by gauge transformations

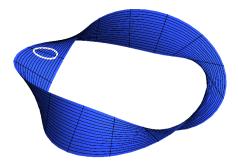


- geometric twists are possible
- B_{ij} fields connected by gauge transformations



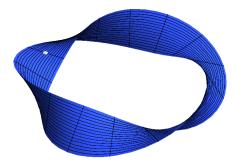
- geometric twists are possible
- B_{ij} fields connected by gauge transformations

- geometric twists are possible
- B_{ij} fields connected by gauge transformations

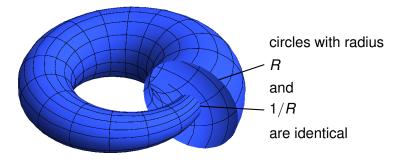


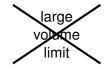
- geometric twists are possible
- B_{ij} fields connected by gauge transformations

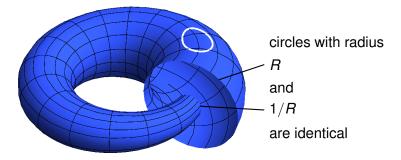
- geometric twists are possible
- B_{ij} fields connected by gauge transformations

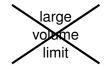


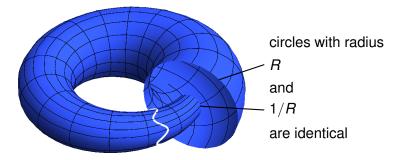
- geometric twists are possible
- B_{ij} fields connected by gauge transformations

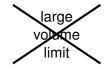


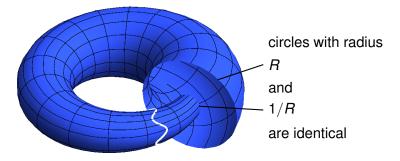




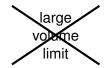








- new interesting properties like non-commutativity
- compactifications lead to gauged SUGRA
 - moduli stabilization
 - effective cosmological constant
 - spontaneous SUSY breaking



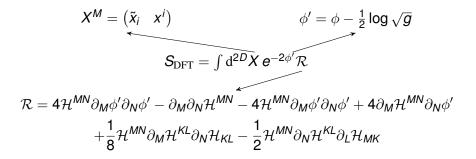
Double Field Theory [5, 6] in a nutshell

- considers both, winding and momentum mode of string
- doubling of coordinates $D \rightarrow 2D$

$$S_{\rm DFT} = \int {\rm d}^{2D} X \, e^{-2\phi'} {\cal R}$$

Double Field Theory [5, 6] in a nutshell

- considers both, winding and momentum mode of string
- doubling of coordinates $D \rightarrow 2D$



Double Field Theory [5, 6] in a nutshell

- considers both, winding and momentum mode of string
- doubling of coordinates $D \rightarrow 2D$

$$X^{M} = (\tilde{x}_{i} \quad x^{i}) \qquad \phi' = \phi - \frac{1}{2} \log \sqrt{g}$$

$$\partial_{M} = (\tilde{\partial}^{i} \quad \partial_{i}) \qquad S_{DFT} = \int d^{2D} X e^{-2\phi' \mathcal{R}}$$

$$\mathcal{R} = 4\mathcal{H}^{MN} \partial_{M} \phi' \partial_{N} \phi' - \partial_{M} \partial_{N} \mathcal{H}^{MN} - 4\mathcal{H}^{MN} \partial_{M} \phi' \partial_{N} \phi' + 4\partial_{M} \mathcal{H}^{MN} \partial_{N} \phi'$$

$$+ \frac{1}{8} \mathcal{H}^{MN} \partial_{M} \mathcal{H}^{KL} \partial_{N} \mathcal{H}_{KL} - \frac{1}{2} \mathcal{H}^{MN} \partial_{N} \mathcal{H}^{KL} \partial_{L} \mathcal{H}_{MK}$$

$$\mathcal{H}^{MN} = \begin{pmatrix} g_{ij} - B_{ik} g^{kl} B_{lj} & -B_{ik} g^{kj} \\ g^{ik} B_{kj} & g^{ij} \end{pmatrix}$$

Gauge transformations and the strong constraint [7, 8]

- generalized Lie derivative combines
 - 1. diffeomorphisms
 - atteomorphisms
 B-field gauge transformations
 available in SUGRA

3. β -field gauge transformations

$$\begin{aligned} \mathcal{L}_{\xi} \mathcal{H}^{MN} &= \xi^{P} \partial_{P} \mathcal{H}^{MN} + (\partial^{M} \xi_{P} - \partial_{P} \xi^{M}) \mathcal{H}^{PN} + (\partial^{N} \xi_{P} - \partial_{P} \xi^{N}) \mathcal{H}^{MP} \\ \mathcal{L}_{\xi} \phi' &= \xi^{M} \partial_{M} \phi' + \frac{1}{2} \partial_{M} \xi^{M} \end{aligned}$$

Gauge transformations and the strong constraint [7, 8]

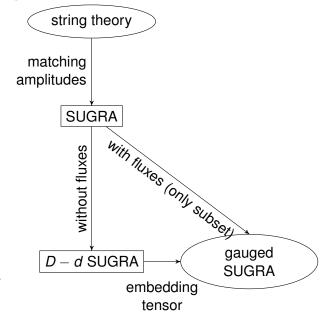
- generalized Lie derivative combines
 - 1. diffeomorphisms
 - aneomorphisms
 B-field gauge transformations

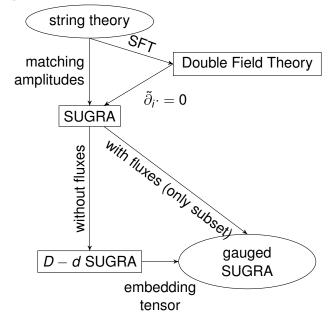
3. β -field gauge transformations

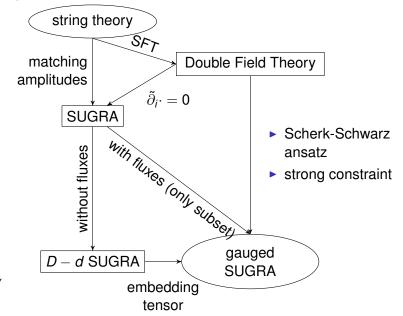
$$\begin{aligned} \mathcal{L}_{\xi} \mathcal{H}^{MN} &= \xi^{P} \partial_{P} \mathcal{H}^{MN} + (\partial^{M} \xi_{P} - \partial_{P} \xi^{M}) \mathcal{H}^{PN} + (\partial^{N} \xi_{P} - \partial_{P} \xi^{N}) \mathcal{H}^{MP} \\ \mathcal{L}_{\xi} \phi' &= \xi^{M} \partial_{M} \phi' + \frac{1}{2} \partial_{M} \xi^{M} \end{aligned}$$

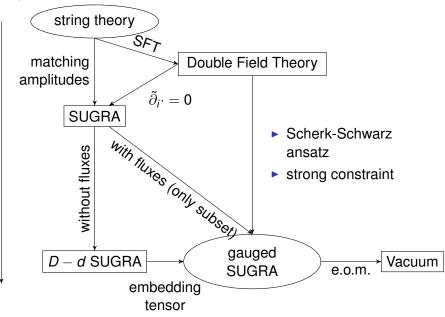
- closure of this algebra needs $\mathcal{L}_{\xi_1}\mathcal{L}_{\xi_2} \mathcal{L}_{\xi_2}\mathcal{L}_{\xi_1} = \mathcal{L}_{\xi_3}$ with $\xi_3 = [\xi_1, \xi_2]_C$ (C-bracket)
- only possible when strong constraint holds

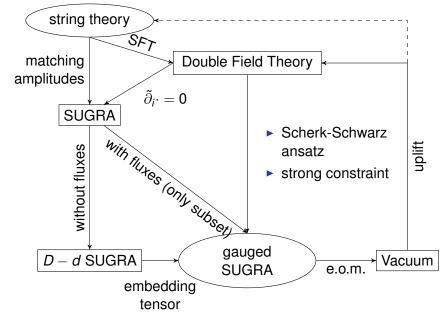
$$\partial_M \partial^M \cdot = 0$$











Gauged SUGRA [10, 11] and its vaccua

DFT action + Scherk-Schwarz ansatz gives rise to

$$\begin{split} S_{\rm eff} &= \int \mathrm{d} x^{(D-d)} \sqrt{-g} e^{-2\phi} \Big(\mathcal{R} + 4 \partial_\mu \phi \partial^\mu \phi - \frac{1}{12} H_{\mu\nu\rho} H^{\mu\nu\rho} \\ &- \frac{1}{4} \mathcal{H}_{MN} F^{M\mu\nu} F^N_{\ \mu\nu} + \frac{1}{8} D_\mu \mathcal{H}_{MN} D^\mu \mathcal{H}^{MN} - V \Big) \end{split}$$

with scalar potential

Gauged SUGRA [10, 11] and its vaccua

DFT action + Scherk-Schwarz ansatz gives rise to

$$\begin{split} \mathcal{S}_{\mathrm{eff}} &= \int \mathrm{d}x^{(D-d)} \sqrt{-g} e^{-2\phi} \Big(\mathcal{R} + 4 \partial_{\mu} \phi \partial^{\mu} \phi - \frac{1}{12} \mathcal{H}_{\mu\nu\rho} \mathcal{H}^{\mu\nu\rho} \\ &- \frac{1}{4} \mathcal{H}_{MN} \mathcal{F}^{M\mu\nu} \mathcal{F}^{N}_{\ \mu\nu} + \frac{1}{8} \mathcal{D}_{\mu} \mathcal{H}_{MN} \mathcal{D}^{\mu} \mathcal{H}^{MN} - \mathcal{V} \Big) \end{split}$$

with scalar potential

- maximally symmetric vacuum = <u>Minkowski</u>, dS, or AdS
- for Minkowski e.o.m for vacuum reduce to

$$0 = \mathcal{R}_{\mu\nu}$$
, $V = 0$ and $\mathcal{K}^{MN} = rac{\delta V}{\delta \mathcal{H}_{MN}} \sim 0$

additional constraints on covariant fluxes *F*_{IJK}

Covariant fluxes as classification tool

- covariant fluxes *F*_{IJK} combine
 - 1. geometric fluxes f and H-flux (known from SUGRA)
 - 2. non-geometric fluxes Q and R
- find fluxes which fulfill all constraint discussed so far
- ▶ solution for D d = 3 (non-vanishing fluxes)

$$H_{123} = Q_1^{23} = H$$
 and $f_{31}^2 = f_{12}^3 = f$

- three different cases
 - 1. H = 0 and $f \neq 0$: Solvmanifold, known from SUGRA
 - 2. $H \neq 0$ and f = 0: T-dual version of 1.
 - 3. $H \neq 0$ and $f \neq 0$: genuinely non-geometric background, called double elliptic

Covariant fluxes as classification tool

- covariant fluxes *F*_{IJK} combine
 - 1. geometric fluxes f and H-flux (known from SUGRA)
 - 2. non-geometric fluxes Q and R
- find fluxes which fulfill all constraint discussed so far
- solution for D d = 3 (non-vanishing fluxes)

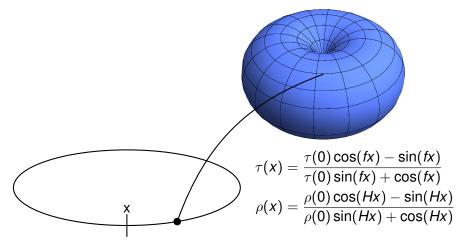
$$H_{123} = Q_1^{23} = H$$
 and $f_{31}^2 = f_{12}^3 = f$

- three different cases
 - 1. H = 0 and $f \neq 0$: Solvmanifold, known from SUGRA
 - 2. $H \neq 0$ and f = 0: T-dual version of 1.

3. $H \neq 0$ and $f \neq 0$: genuinely non-geometric background, called double elliptic

How do these backgrounds "look" like?

• fibration of T^2 over a S^1 base with coordinate x

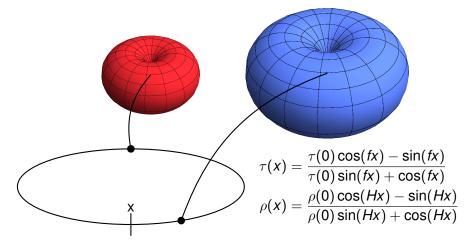


• T^2 parameterized by ρ and τ (functions of x)

• fixed point of twist is $\rho(0) = \tau(0) = i$

How do these backgrounds "look" like?

Fibration of T^2 over a S^1 base with coordinate x

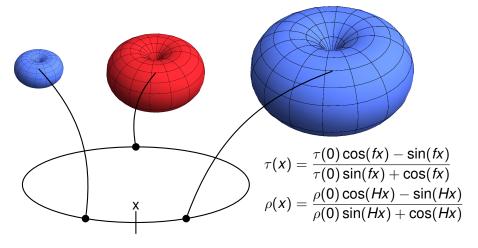


• T^2 parameterized by ρ and τ (functions of x)

• fixed point of twist is $\rho(0) = \tau(0) = i$

How do these backgrounds "look" like?

Fibration of T^2 over a S^1 base with coordinate x



• T^2 parameterized by ρ and τ (functions of x)

• fixed point of twist is $\rho(0) = \tau(0) = i$

Moduli stabilization

- ▶ scalar potential for fiber moduli $\rho(0) = \rho$ and $\tau(0) = \tau$
- minimum at fixed point of twist with $V_{\min} = 0$ (Minkowski)
- \blacktriangleright mass terms for ρ and τ

modulus	$ ho_{ m R}$	$ ho_{ ext{I}}$	$ au_{\mathrm{R}}$	$ au_{ m I}$
mass	2 <i>H</i>	2 <i>H</i>	2 <i>f</i>	2 <i>f</i>

Moduli stabilization

- ▶ scalar potential for fiber moduli $\rho(0) = \rho$ and $\tau(0) = \tau$
- minimum at fixed point of twist with $V_{\min} = 0$ (Minkowski)
- \blacktriangleright mass terms for ρ and τ

Moduli stabilization

- ▶ scalar potential for fiber moduli $\rho(0) = \rho$ and $\tau(0) = \tau$
- minimum at fixed point of twist with $V_{\min} = 0$ (Minkowski)
- \blacktriangleright mass terms for ρ and τ

- *H* and $f \in \{\frac{1}{6}, \frac{1}{4}, \frac{1}{3}, \frac{1}{2}\}$ are quantized
- volume $\rho_{\rm I}$ of fiber torus $\approx (I_s)^2$
- \rightarrow no large volume limit!
 - closely related the asymmetric orbifold [12, 13]
 - still 5 flat directions, e.g. radius of base R

A hidden violation of the strong constraint

We have found a background

- without large volume limit
- stabilizes additional moduli
- generalized metric fulfills the strong constraint

not in scope of SUGRA or generalized geometry

A hidden violation of the strong constraint

We have found a background

- without large volume limit
- stabilizes additional moduli
- generalized metric fulfills the strong constraint

not in scope of SUGRA or generalized geometry

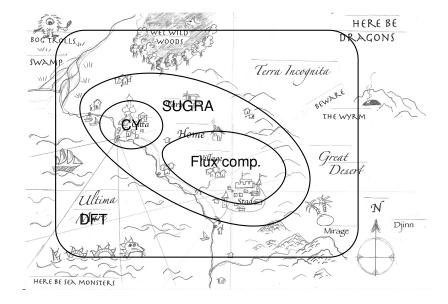
BUT, looking more closely, we see

one Killing vector which violates the strong constraint

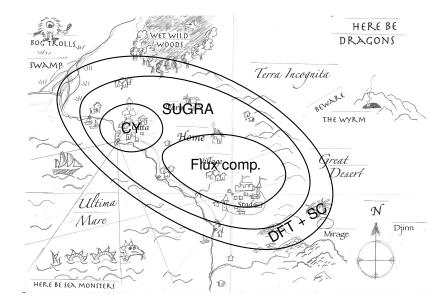
 $K^{l} = \begin{pmatrix} 0 & -\frac{1}{2}(Hx^{3} + f\tilde{x}^{3}) & \frac{1}{2}(Hx^{2} + f\tilde{x}^{2}) & 1 & -\frac{1}{2}(fx^{3} + H\tilde{x}^{3}) & \frac{1}{2}(fx^{2} + H\tilde{x}^{2}) \end{pmatrix}$

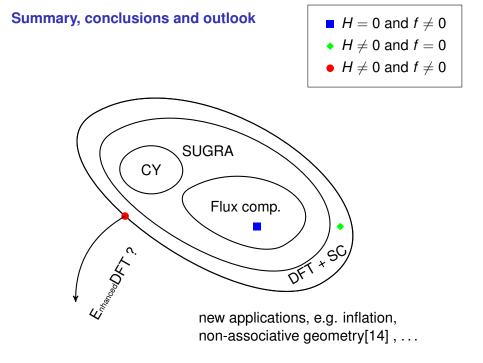
- ightarrow patched by diffeomorphisms, *B*-field and β -transformations
 - algebra of Killing vectors still closes

Summary, conclusions and outlook



Summary, conclusions and outlook





Thank you for your attention. Do you have any questions?

Group manifold = Scherk-Schwarz ansatz in doubled coordinates

- **1.** Homogenious space in 2(D-d) dimensions
 - space "looks" at every point the same
 - ▶ 2(D-d) linear independent Killing vector K_{I}^{J}

$$\mathcal{L}_{\mathcal{K}_{l}^{J}}\mathcal{H}^{MN}=0 \quad \text{and} \quad \mathcal{L}_{\mathcal{K}_{l}^{J}}\phi'=0$$

- infinitesimal translations $\mathcal{L}_{K,J}$ form group G_{L}
- 2. Gauge transformations
 - map space to itself by

$$\mathcal{L}_{U_N{}^M}\mathcal{H}^{IJ} = -\mathcal{F}_{IML}U_N{}^M\mathcal{H}^{LJ} - \mathcal{F}_{JML}U_N{}^M\mathcal{H}^{IL}$$

- infinitesimal translations $\mathcal{L}_{U_{M}}^{M}$ form group G_{R}
- structure coefficients *F*_{IJK} = covariant fluxes
- closure of $G_{
 m R}
 ightarrow$ constraints on ${\cal F}_{IJK}$

References I

- L. Susskind, "The Anthropic landscape of string theory," arXiv:hep-th/0302219 [hep-th].
- M. R. Douglas, "The Statistics of string / M theory vacua," JHEP 0305 (2003) 046, arXiv:hep-th/0303194 [hep-th].
- S. Ashok and M. R. Douglas, "Counting flux vacua," JHEP 0401 (2004) 060, arXiv:hep-th/0307049 [hep-th].
- C. M. Hull, "Doubled Geometry and T-Folds," JHEP 0707 (2007) 080, arXiv:hep-th/0605149 [hep-th].
- C. Hull and B. Zwiebach, "Double Field Theory," JHEP 0909 (2009) 099, arXiv:0904.4664 [hep-th].
- O. Hohm, C. Hull, and B. Zwiebach, "Generalized metric formulation of double field theory," JHEP 1008 (2010) 008, arXiv:1006.4823 [hep-th].

References II

- C. Hull and B. Zwiebach, "The Gauge algebra of double field theory and Courant brackets," JHEP 0909 (2009) 090, arXiv:0908.1792 [hep-th].
- O. Hohm and B. Zwiebach, "Large Gauge Transformations in Double Field Theory," JHEP 1302 (2013) 075, arXiv:1207.4198 [hep-th].
- J. Scherk and J. H. Schwarz, "How to Get Masses from Extra Dimensions," *Nucl.Phys.* **B153** (1979) 61–88.
- G. Aldazabal, W. Baron, D. Marques, and C. Nunez, "The effective action of Double Field Theory," *JHEP* **1111** (2011) **052**, arXiv:1109.0290 [hep-th].
- M. Grana and D. Marques, "Gauged Double Field Theory," JHEP 1204 (2012) 020, arXiv:1201.2924 [hep-th].

References III

- C. Condeescu, I. Florakis, and D. Lüst, "Asymmetric Orbifolds, Non-Geometric Fluxes and Non-Commutativity in Closed String Theory," JHEP 1204 (2012) 121, arXiv:1202.6366 [hep-th].
- C. Condeescu, I. Florakis, C. Kounnas, and D. Lüst, "Gauged supergravities and non-geometric Q/R-fluxes from asymmetric orbifold CFT's," JHEP 1310 (2013) 057, arXiv:1307.0999 [hep-th].
- R. Blumenhagen, M. Fuchs, F. Hassler, D. Lüst, and R. Sun, "Non-associative Deformations of Geometry in Double Field Theory," arXiv:1312.0719 [hep-th].