Overview of ATLAS Local Hadron Calibration

Gennady Pospelov, MPI München for the ATLAS Hadronic Calibration group

CALOR08, 26-30 May 2008, Pavia, Italy

- ATLAS calorimeters
- global and local calibration approaches
- local hadron calibration steps:
 - weighting, out-of-cluster, dead material corrections
- performance
- summary

ATLAS calorimeters

nonlinearity < 2%

Global and local calibration approaches

Local Hadron Calibration Schema

Local Hadron Calibration is called to deal with non-compensating nature of hadron calorimeter.

3-d topological clusters with
cells at em scale.

classify clusters as EM, HAD or Unknown

cluster calibration

out-of-cluster correction

dead material correction

calibrated clusters

- starts with topological 3D clusters, which are efficient tool to suppress electronic and pile up noise
- classification to identify em/non-em part of the shower, relay on cluster calorimeter depth and cluster energy density
- H1-style hadronic weighting of clusters classified as HAD
- correction for energy deposited in calorimeter cells outside of any cluster
- correction for energy losses in dead material in front and between calorimeter modules

• Calibration is independent of any jet algorithm; defines the same hadronic scale for all signals (missing E_{τ} , jets, τ 's).

- Factorization of different effects (e/h, out-of-cluster, dead material...).
- Based on single pions simulation.

Cluster making algorithm

- form cluster around seed cells with $|E_{cell}| > S \cdot \sigma_{noise}$, S=4
- expand in 3D, add neighbours with $|E_{cell}| > N \cdot \sigma_{noise}$, N=2
- add perimeter cells with $|E_{cell}| > P \cdot \sigma_{noise}$, P=0
- Seed/Neighbour/Perimeter formula = 4/2/0 good for combined beam tests

Cluster splitting algorithm

- split clusters around local maxima with maxima threshold E>500MeV
- one cell can share energy between two clusters
- aim is to have one cluster per isolated e^{\pm}, μ, γ , currently $N_{particle}/N_{clusters} = 1.6$ in jet context

Calibration hits

Calibration hits are implemented into ATLAS Geant4 simulation to save 4 energy categories:

O(50%) EM (e^{\pm} , γ) nonEM (dE/dX from π^{\pm} , μ^{\pm}) O(25%) Invisible (nuclei excitation) O(25%) Escaped (v)O(2%)

for each calorimeter cell:

active cells (LAr) inactive cells (Absorber) dead material cells (i.e. virtual cells containing inactive material outside calorimeter cell volumes, with 0.1x0.1 typical granularity)

Total sum of *EM*+non*EM*+invisible+escaped energies in all active/inactive/dead material calibration hits == total energy of generated primary particles.

Calibration energies depends on pion energy and are the subject of big fluctuation.

calibration

Classification

To identify EM and non-EM parts of the shower

```
Uses following shower shape variables (so-called cluster moments):
```

```
\lambda_{center} cluster barycenter depth in calorimeter 
<\rho_{cell}> average cell energy density
```

High average cell energy density and small calorimeter cluster depth denotes EM nature of the cluster.

4-dimensional phase space for clusters in

 $|\eta|$, E_{cluster}, log10(λ_{center}), log10(< ρ_{cell} >)

is binned and filled with simulated pions in the energy range 200MeV < $E_{cluster}$ <2TeV

Fraction of neutral and charged pions in given phase-space bin i is used to calculate weight:

$$w_i = n_{\pi^0}^i / (n_{\pi^0}^i + 2 n_{\pi^\pm}^i)$$

At reconstruction stage cluster will be treated as hadronic if lookup value for w < 0.5 at a given cluster phase-space point.

Table of probability for cluster to be EM 2.0< $|\eta|$ <2.2, 4GeV $\leq E_{cluster}$ < 16 GeV

Classification performance

Energy fractions of single pions classified as electromagnetic / hadronic as a function of the pion energy averaged over all η and Φ .

Weighting

Cell weights are derived from true energy deposits in LAr+Absorber (calibration hits) and accounts for invisible energy.

 $E'_{cell} = w \cdot E_{cell}$, $w = \langle \left(E_{cell}^{Em} + E_{cell}^{nonEm_{vis}} + E_{cell}^{nonEm_{invis}} + E_{cell}^{escaped} \right) / E_{cell}^{reco} \rangle$

calibration hits

Weights are kept as a function of cluster energy $E_{cluster}$ and average cell energy density $<\rho_{cell}>$, for different η regions and longitudinal sampling.

Weights are applied only to the clusters classified as hadronic.

cell signal at em scale (with noise and HV correction)

Hadronic cell weight table for 2.0< $|\eta|$ <2.2, HEC layer 1

Out-Of-Cluster (OOC) correction

Accounts for energy deposited in cells which are not part of any cluster.

- derived from single pion simulation
- use calibration hits info
- figure shows the ratio of out-of-cluster energy for neutral (left) and charged (right) pions versus $\eta.$

correction factor is

OOC energy is stored in lookup tables $\bullet~E_{cluster},~|\eta|,~\lambda_{cluster}$ bins

Out-Of-Cluster (OOC) correction

Over correcting problem

- OOC energy for one cluster could actually be deposited in another cluster.
- especially important for jets

Cluster isolation moment

• fraction of cells on the outer cluster perimeter that are not included in any other cluster

Level of isolation for clusters above 1GeV versus $|\eta|$ for single charged pion (left) and tt sample (right).

Out-of-cluster correction final estimate

 it's a product of OOC correction from look-up table and cluster isolation moment Correction is applied as a multiplicative factor to all cells in the cluster

Dead material correction

Dead material (DM) correction accounts for energy deposited outside of active calorimeter volumes.

 $\leftarrow \text{ Average ratio of DM energy (taken from calibration hits) to the beam energy versus } |\eta| \text{ for charged pions at different energies.}$

Dead material correction

- Correction is derived for each DM region separately using correlation of DM energy losses (MC) and cluster quantities calculated at electromagnetic scale.
- Two major approaches:
 - 1. Parametrization of DM energy losses with the first order polynomial, e.g.

 $E_{PreSampler}^{DM} = a(em/nonem, E_{clust}, \eta_{clust}) + b(em/nonem, E_{clust}, \eta_{clust}) * E_{PreSampler}$ $E_{EMB3 TILE0}^{DM} = a(em/nonem, E_{clust}, \eta_{clust}) + b(em/nonem, E_{clust}, \eta_{clust}) * \sqrt{(E_{EMB3} * E_{TILE0})}$

- 2. Keeping $\langle E_{DM}/E_{clust} \rangle$ for intricate DM regions in look-up table: $E_{cluster}$, $|\eta|$, $\lambda_{cluster}$ bins.
- DM energy is then added to the cluster by increasing cluster cells weights.

energy lost between EMEC and HEC as a function

for clusters with 4.7<log10(E_{clust})<5.1

Performance for single pions

Ratio of reconstructed over simulated pion energy for 100 GeV single charged pion at η=0.3 at various stages of the calibration. **red**: em-scale, **blue:** +weighted, **green:** +out-of-cluster, **black:** +dead material

Performance for single pions

 E_{reco}/E_{true} versus η for single pions at em-scale (left) and after weighting, out-of-cluster and dead material corrections (right).

Performance for jets

Linearity plot for Kt jets with R=0.6 calibrated with the local hadron calibration method using truth particle as reference.

The linearity is shown as a function of matched truth jet energy.

Main sources of remaining energy correction (P_{\perp} ~150GeV estimation):

- missclassification: hadronic energy deposits treated as electromagnetic and vice versa
- calorimeter inefficiency, when particle leaves signal below noise threshold
- · jet effects, e.g. particles are bent out of jet cone by magnetic field

~3%

~3%

~2%

- Local Hadron Calibration is called to deal with non-compensating nature of hadron calorimeter.
- It consists of 4 steps:
 - cluster classification, weighting, out-of-cluster correction, dead material correction.
- Factorization of these effects simplifies the future validation.
- For single pions linearity on the level of ~2% for $|\eta|<1.0$ and $1.7<|\eta|<2.9$, energy resolution is improving by ~20% for $E_{\pi}>100$ GeV.
- Calibration provides jet algorithms with calibrated constituents and defines the same hadronic scale for all signals.
- Current jet scale provided by local hadron calibration is 8% off for di-jets with P \perp ~150GeV. This is explained by
 - misclassification (3%),
 - calorimeter inefficiency for low energetic pions (3%)
 - out-of-jet effects (2%).

backup

average energy deposited by 500 GeV single charged pions in dead material calibration hits