Hadronen-Beschleuniger: Tevatron und LHC

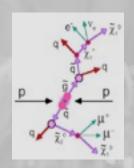
- Grundlagen der Teilchenbeschleunigung
- Tevatron:
 - Antiprotonen
 - stochastische Kühlung
- Der Large Hadron Collider:
 - Visionen und Herausforderung
 - supraleitende Magnete
 - Status und Pläne

Das Standardmodell der Teilchenphysik...

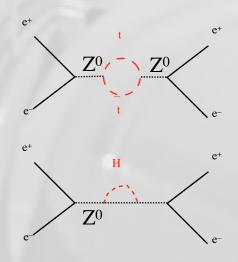
• ... beschreibt erfolgreich und präzise alle bekannten Teilchen und Kräfte (LEP, HERA, Tevatron)

Elementare Teilchen			en	Elementare Kräfte		
	Ge	enerati	on 3		Austauschboson	nelative Starke
Quarks	u	c	t	Stark	g	o 1
Quality	d	S	b	Elmagn.	Y	1/137
	v _e	V _{II}	VT	Schwach	W^{\pm}, Z^{0}	10-14
Leptonen	e µ	μ	τ	Gravitation	G	10-40

... kann jedoch nicht die ultimative Theorie sein!


es lässt viele fundamentale Fragen offen:

- Erzeugung der Teilchenmassen (Higgs-Boson?)
- bisher noch keine Quantenfeldtheorie der Gravitation
- Vereinheitlichung aller Kräfte (GUT; TOE) ?
- wo ist die Antimaterie geblieben ? ("warum gibt es uns?")
- was sind die "Dunkle" Materie und Energie, die 95% unseres Universums ausmachen?


es gibt 2 prinzipielle Möglichkeiten, um nach Physik jenseit des Standardmodells zu suchen:

• direkte Produktion neuer Teilchen in höchstenergetischen Kollisionen

(diese Vorlesungsreihe)

• indirekte Evidenz für neue Phänomene in Hochpräzisions-Experimenten (durch virtuelle "Schleifen")

Kurze Frühgeschichte der Beschleunigerphysik

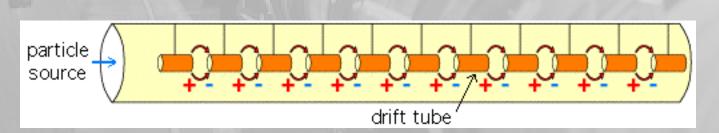
- 1928: R. Wideroe berichtet über ersten Betrieb eines Linearbeschleuingers (Ka- und Na-Ionen)
- 1931: Van de Graaff konstruiert ersten Hochspannungsgenerator
- 1932: Lawrence und Livingston präsentieren ersten Protonen-Strahl vom 1.2 MeV Zyklotron
- 1939: Hansen, Varian und Varian erfinden Klystron
- 1941: Kerst und Serber stellen das erste funktionierende Betatron vor;

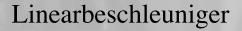
 Touschek und Wideroe entwickeln das Prinzip von Ringbeschleunigern
- 1947 Alvarez entwickelt ersten Proton-Linearbeschleuniger
- 1950 Christofilos formuliert Konzept der Starken Fokussierung

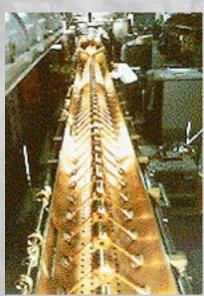
E.O. Lawrence

Differentialform	Integralform
$ ext{div } \vec{ ext{D}} = ho_{ ext{frei}}$	$\mathbf{f}\vec{\mathbf{D}}\cdot\mathbf{d}\vec{\mathbf{A}} = \mathbf{Q}$
$div \vec{B} = 0$	$\mathbf{f}\vec{\mathbf{B}}\cdot\mathbf{d}\vec{\mathbf{A}} = 0$
$\operatorname{rot} \vec{E} = -\frac{\partial \vec{B}}{\partial t}$	$\mathbf{f}\vec{E} \cdot d\vec{s} = -\frac{d}{dt}\mathbf{f}\vec{B} \cdot d\vec{A}$
$rot \vec{H} = \vec{j} + \frac{\partial \vec{D}}{\partial t}$	$\oint \vec{H} \cdot d\vec{s} = I + \frac{d}{dt} \int \vec{D} \cdot d\vec{A}$

Maxwell-Gleichungen

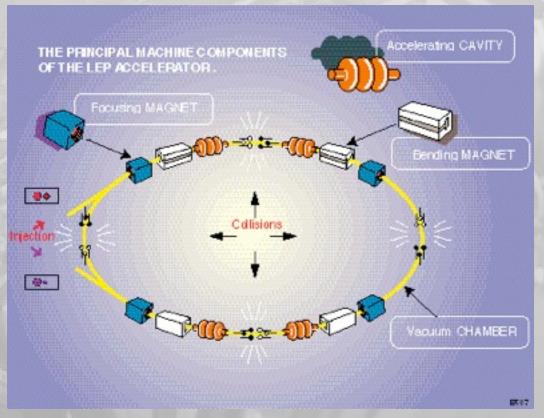

$$\vec{F} = q(\vec{E} + \vec{v} \times \vec{B})$$


Lorentzkraft


n.b.: Lorentzkraft bei zeitabhängigen Feldern ist keine konservative Kraft, i.e.

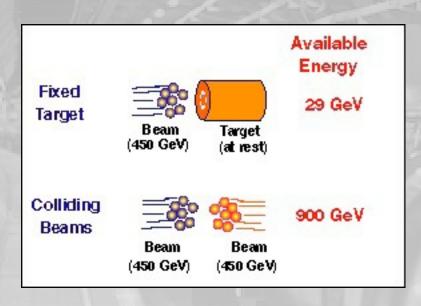
 $\oint \vec{F} \, d\vec{s} \neq 0$

Pole Vacuum Oscillator
Tank Coupling



Zyklotron

Kreisförmige Beschleuniger

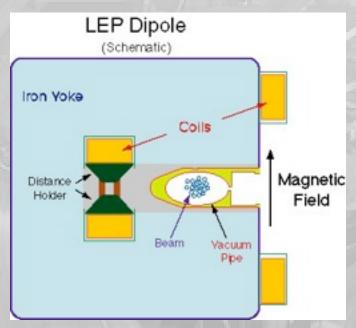


Vorteile:

- Magnetfeld nur lokal um Strahlführung (ökonomischer als Zyklotron)
 - Mehrfachbenutzung der Beschleunigerstrecken
 - Höhere effektive Schwerpunktsenergie im "Collider"-Modus
 - Effektivere Ausnutzung der Teilchen (Speicherring)

Nachteile: • Energieverlust durch Bremsstrahlung (Synchrotronstrahlung)

Fixed Target versus Colliding Beams



für Protonen ($m_pc^2 \sim 1 \text{ GeV}$):

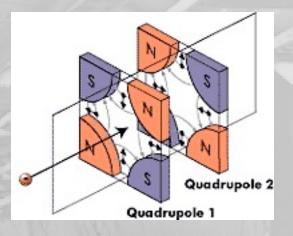
$$E_{cm} = \sqrt{2(\gamma + 1)} m_p c^2$$

$$E_{cm} = 2E = 2\gamma m_p c^2$$

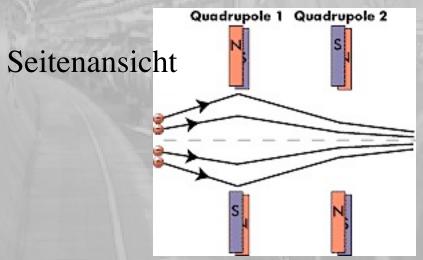
Funktionsteile von Kreisbeschleunigern:

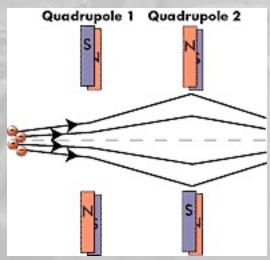
Dipol (Kreisbahn)

Kavität (Beschleunigung)



Tunnel, Strahlröhre, Vakuumpumpen, Sextupol, ...


Quadrupol (Fokussierung)



Strong Focussing

$$\frac{1}{f} = \frac{1}{f_1} + \frac{1}{f_2} - \frac{d}{f_1 f_2}$$
$$= \frac{f_1 + f_2 - d}{f_1 f_2}$$

Ansicht von oben

Zwei gekreutzte Quadrupole im Abstand d kleiner als deren doppelte Fokallänge wirken insgesamt fokussierend (in beiden Ebenen).

Collider Parameter

Ereignis-Rate R:

$$R = L \cdot \sigma$$

o: Wirkungsquerschnitt

Luminosität L:

$$L = f \frac{n_1 n_2}{4\pi\sigma_x \sigma_y}$$

f: Kollisionsfrequenz

 $L = f \frac{n_1 n_2}{4\pi\sigma_x \sigma_y}$ n_i: Anzahl Teilchen in Paket i σ_X: horizontale Strahlgröße

σy: vertikale Strahlgröße

Strahlgröße:

- transversale Emittanz & (Strahlqualität)
- Amplitudenfunktion β (Strahloptik)

 $\varepsilon = \pi \sigma \sigma'$ σ : transversale Versetzung

 $\beta = \sigma/\sigma'$ σ' : Winkel bzgl. Strahlachse

 $\beta*$: Wert der β -function am WW-Punkt.

Luminosität L:
$$\Rightarrow L = f \frac{n_1 n_2}{4 \sqrt{\varepsilon_x \beta_x^* \varepsilon_y \beta_y^*}}$$

Synchrotronstrahlung:

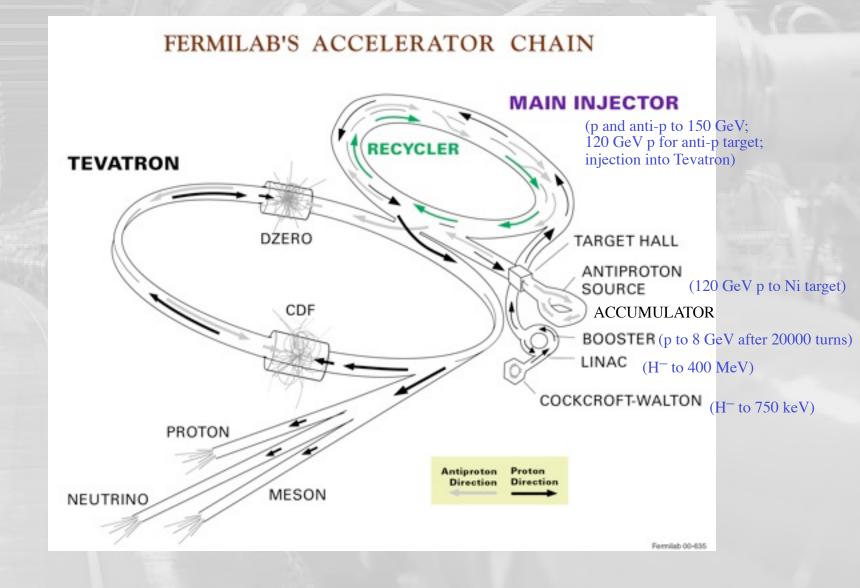
Abstrahlungsleistung eines relativistischen Teilchens bei zentripetaler Beschleunigung:

$$P = \frac{1}{6\pi\varepsilon_0} \frac{e^2 a^2}{c^3} \gamma^4$$

$$a = v^2/\rho$$

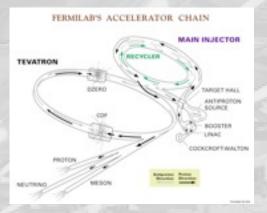
v: Teilchengeschwindigkeit

ρ: Krümmungsradius


Pro Umlauf abgestrahlte Energie:


• Elektron mit
$$v \approx c$$

W =
$$8.85 \times 10^{-5} \frac{E^4}{\rho} \frac{[MeV^4]}{[km]} MeV$$


• Proton mit
$$v \approx c$$

W =
$$7.8 \times 10^{-6} \frac{E^4}{\rho} \frac{[TeV^4]}{[km]} MeV$$

Fermilab's Accelerator Chain

Cockcroft-Walton DC accelerator

LINAC

Booster

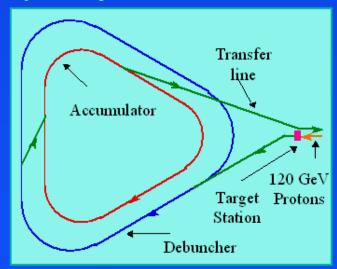
Main Injector

Antiproton Source

Tevatron

Warum Antiprotonen?

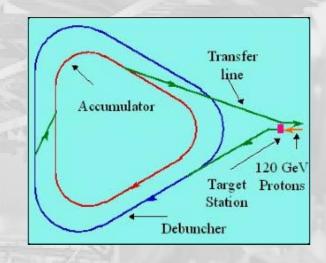
- können in gegensätzlicher Richtung durch dieselben Magnetfelder in einer einzigen Strahlröhre fliegen —> ein Ring statt zwei.
- bis zu 3 TeV Kollisionsenergie sind die Produktionsquerschnitte einiger Reaktionen in Proton-Antiproton Kollisionen höher als in Proton-Proton

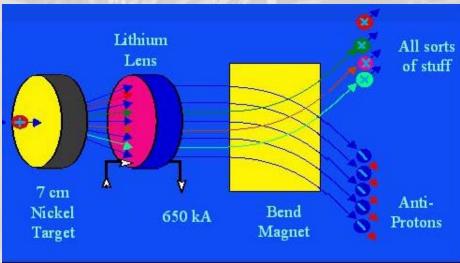

Nachteil von Antiprotonen:

• müssen erst erzeugt werden ...

Anti-Proton Production

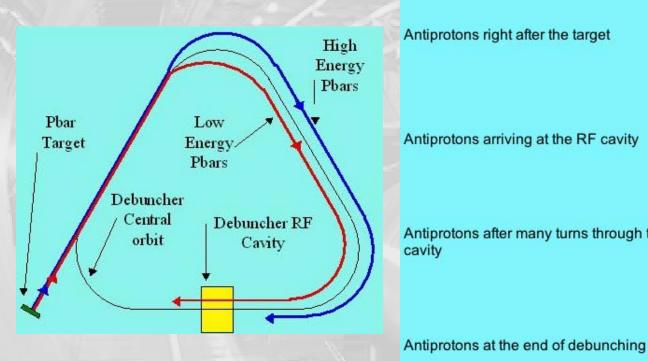
- The Anti-Proton Source consists of three major components:
 - ◆ The Target Station
 - ♦ The Debuncher
 - The Accumulator
- For every 1 million 120 GeV protons smashed on the pbar target, only about twenty 8 GeV pbars survive to make it into the Accumulator.

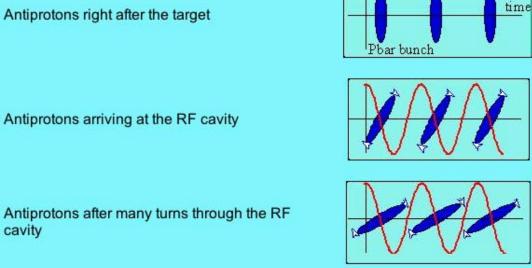



The price of pbars

$$\frac{15 \text{ MW} \times \$45 \text{ / MW-hr}}{5 \times 10^{10} \frac{\text{pbars}}{\text{hr}} \times 9.5 \times 1.67 \times 10^{-27} \frac{\text{kg}}{\text{pbar}} \times 2.2 \frac{\text{lbs}}{\text{kg}} \times 16 \frac{\text{oz}}{\text{lbs}}} = \$24,000 \times 10^{-12} \text{ / oz}$$

Die Antiprotonen-Quelle

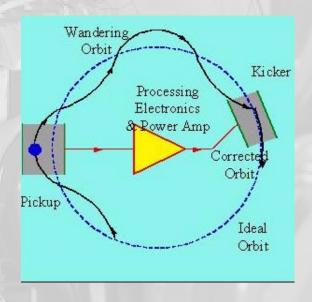




Debuncher & Accumulator

Debuncher

Austausch von grossem Energie- und kleinem Zeitbereich zu Kleinem Energiebereich mit langer Zeitstruktur.



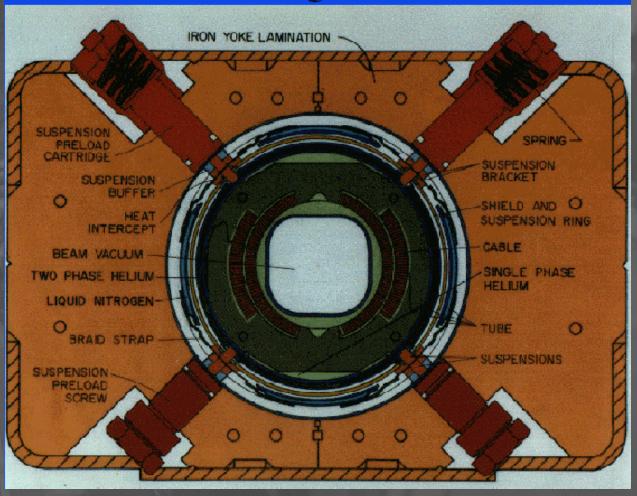
Energy

Stochastische Kühlung

(Nobelpreis Simon van der Meer 1984)

Reduktion des transversalen Phasenraums von Antiprotonen, durchgeführt im Debuncher (Verweildauer 1.5 sec) und im Accumulator (mehrere Stunden).

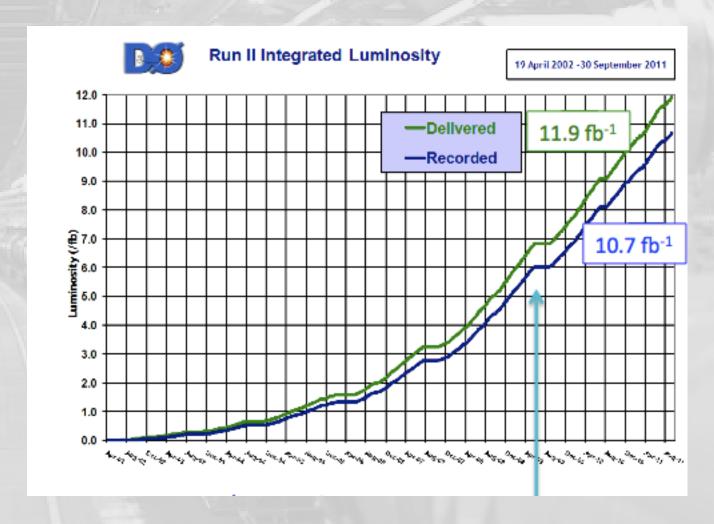
Verstärkung des Pick-Up Signals um 150 dB (10¹⁵).


Tevatron

Superconducting Magnets

- Magnets in the TEVATRON are superconducting.
- There are about 1000 magnets in the TEV
- The coils are made of niobuim-titanium alloy wire.
 - ◆ The size of the wire is 0.0003 inches (8 um)
 - ◆ There are 11 million wire-turns in a coil.
 - ♦ The dipole magnet is 21 feet long
 - ♦ There are 42,500 miles of wire in a magnet
- For 900 GeV operation, the magnets are kept at 4.6° Kelvin.
- For 1000 GeV operation, the cryogenic system has been upgraded to obtain a temperature of 3.6° Kelvin (-453°F)

TEVATRON Magnet Cross-Section



Superconducting Magnets

- The field in the magnets at 900 GeV is 4 Tesla (The Earth's magnetic field is 0.0003 Tesla, 13,000 times weaker then a TEV magnet)
 - An LHC magnet (Large Hadron Collider in Geneva, Switzerland)
 will have a magnetic field between 8-10 Tesla.
 - The theoretical limit for mechanically constraining a superconducting magnet is about 15 Tesla.
- The current flowing through a magnet at 900 GeV is 4000 Amperes.
 - The total inductance of the TEVATRON is 36 H.
 - The total magnetic stored energy in the TEVATRON at 900 GeV is 288 MegaJoules.
 - The time constant of the current dump system is 12 seconds.
 - If all the current in the TEV needed to be dumped, the dump resistors would have to dissipate energy at 24 megawatts

Tevatron integrated Luminosity (after project termination on 30 Sept 2011)

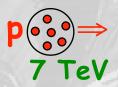
peak L: $\sim 10^{32}$ cm⁻² s⁻¹

der Large Hadron Collider

Visionen (1980'er)

- Bau eines Teilchenbeschleunigers mit den höchsten technisch realisierbaren Kollisionsenergien, mit dem Ziel:
 - das Standard Modell jenseits von Energien von 1 TeV zu testen
 - die fehlenden Teile des SM zu finden: das top-Quark ...
 - den Mechanismus der elektroschwachen Symmetrie-Brechung zu erforschen (d.h., das Higgs Boson zu finden)
 - nach einer neuen Physik jenseits des Standard Modells zu suchen (SUperSYmmetrie; höhere Raumdimensionen; ...)
 - das Unerwartete zu finden

Herausforderungen:


•"schnell" und "billig"

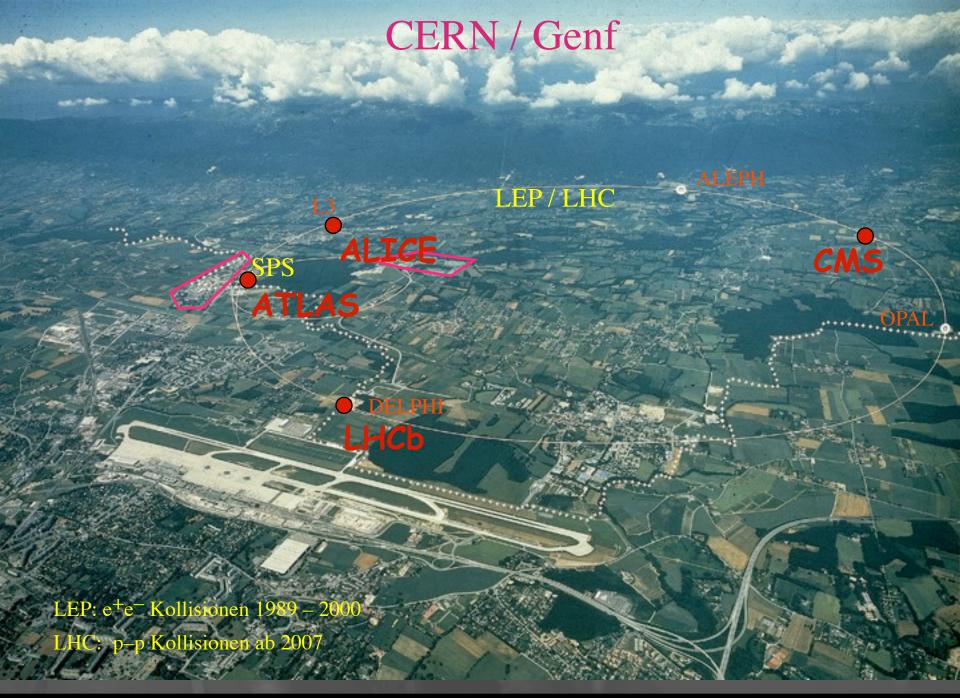
- höchste Energien bei gegebenem Tunnelradius
- Kollisionsenergie der Konstituenten von ~TeV
- Protonen-Energien von mindestens 5 TeV
- produziere Objekte sehr hoher Massen
- L $\sim 10^{34}$ cm⁻² s⁻¹

- benutze den existierenden
 LEP-Tunnel und die Vorbeschleuniger am CERN
- -> beschleunige Protonen
 (statt Elektronen bei LEP)
- -> Protonen-Energien von mindestens 5 TeV
- supraleitende Magnete mit ~ 8 Tesla
- → benötige hohe Strahlstärken (L ~10³⁴ cm⁻² s⁻¹)
- -> hohe Datenraten; Strahlungssch.

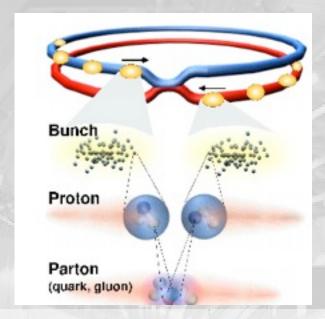
Der Large Hadron Collider (LHC)

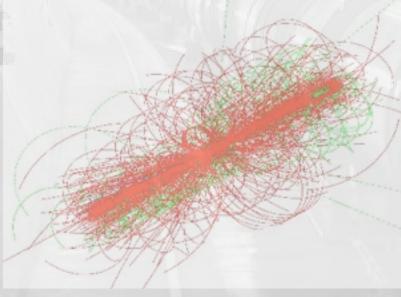
 Proton-Proton Beschleuniger im LEP-Tunnel am CERN

- Höchste Energien pro Kollision
- Höchste Luminositäten


• Vier Experimente:

ATLAS, CMS LHC-B


ALICE


(pp-Physik)(Physik der b-Quarks)(Pb-Pb Kollisionen)

- Gebaut in internationalen Kollaborationen aus ~40 Ländern
- Inbetriebnahme: 2005 -> 2007 -> 2008 -> 2009

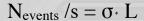
Der Large Hadron Collider (LHC)

Proton – Proton Kollisionen:

2835 x 2835 Pakete (bunches) Abstand: 7.5 m (25 ns)

10¹¹ Protonen / bunch

Kreuzungsrate der p-Pakete: 40 Mio. mal / sec.


Luminosität: $L = 10^{34} \text{ cm}^{-2} \text{ sec}^{-1}$

Proton-Proton Kollisionen: ~10⁹ / sec (Überlagerung von 20-30 pp-Wechselwirkungen während einer Strahlkreuzung)

~1600 geladene Teilchen im Detektor

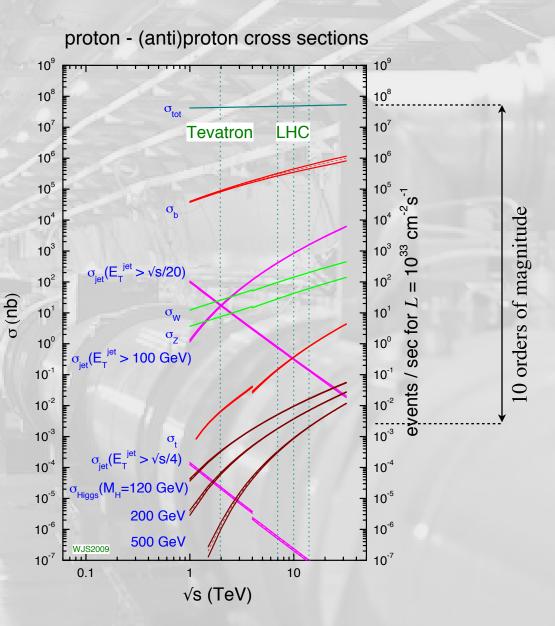
⇒ hohe Anforderungen an die Detektoren

Production cross sections and event rates at LHC

$$N_{events} = \sigma \cdot \int L \cdot dt$$

 $1 \text{ nb} = 10^{-33} \text{ cm}^2$

calculus (example):


End of 2010:

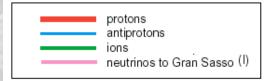
$$\int L dt = 40 \text{ pb}^{-1} = 40 \cdot 10^3 \text{ nb}^{-1}$$

corresp. to $\sim 4 \cdot 10^3$ top-quarkevents ($\sigma_t \sim 10^{-1}$ nb at 7 TeV)

corresp. to \sim 200 Higgs-evts. with M_H =120 GeV at 7 TeV

data sample 2011: $\sim 5 \text{ fb}^{-1}$ data sample 2012: $\sim 20 \text{ fb}^{-1}$

Produktionsraten am LHC


 Inelastische Proton-Proton Reaktionen: Quark -Quark/Gluon Streuungen mit großen transversalen Impulsen (> 20 GeV) 		Milliarde / sec Millionen/ sec
b-Quark Paaretop-Quark Paare	5 8	Millionen / sec / sec
• W → e v • Z → e e	150 15	/ sec / sec
 Higgs (Masse = 150 GeV) Gluino, Squarks (Masse = 1 TeV) 	0.2 0.03	

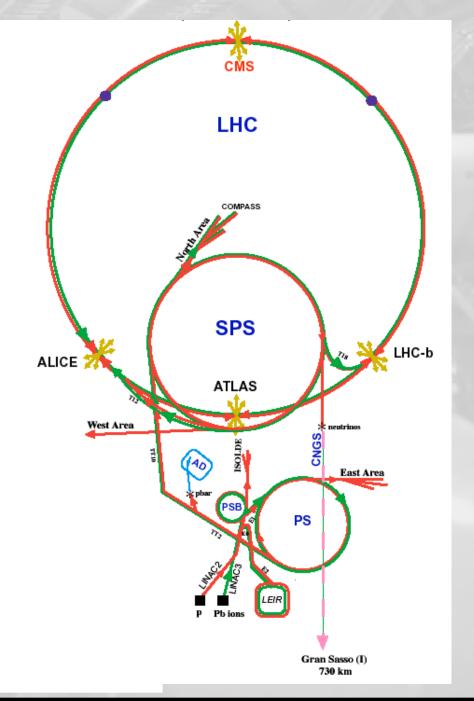
- Interessante Physikprozesse sind selten:
 - ⇒ hohe Strahlintensität des Beschleunigers, extrem gute Detektoren (Unterdrückung des Untergrundes)

Beschleunigersystem

des CERN

(nicht skalentreu)

LHC: Large Hadron Collider SPS: Super Proton Synchrotron AD: Antiproton Decelerator

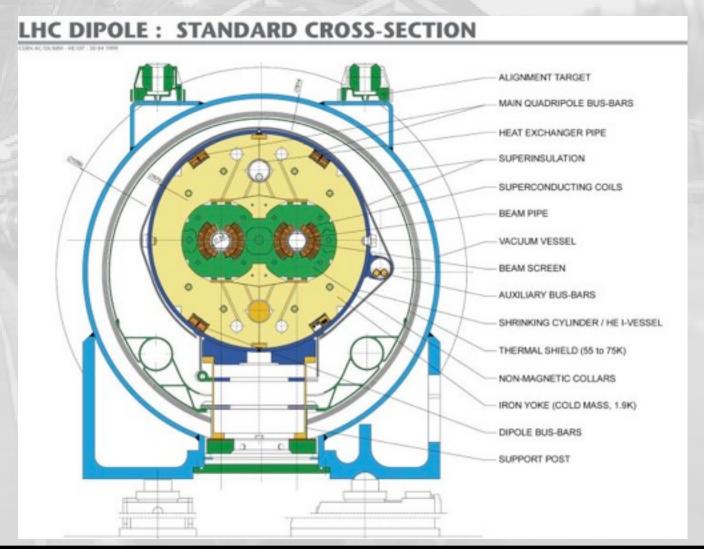

ISOLDE: Isotope Separator OnLine DEvice

PSB: Proton Synchrotron Booster

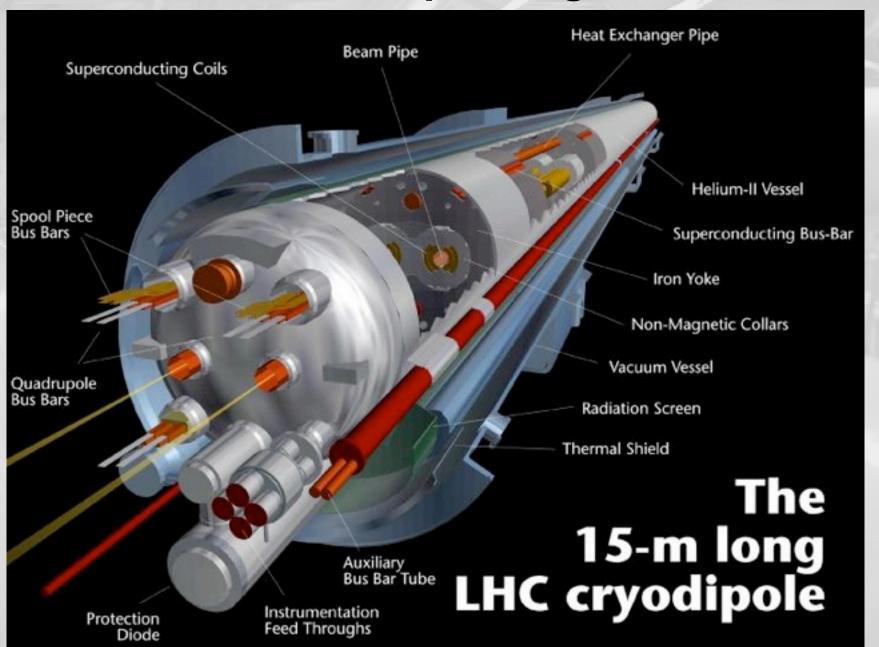
PS: Proton Synchrotron

LINAC: LINear ACcelerator LEIR: Low Energy Ion Ring

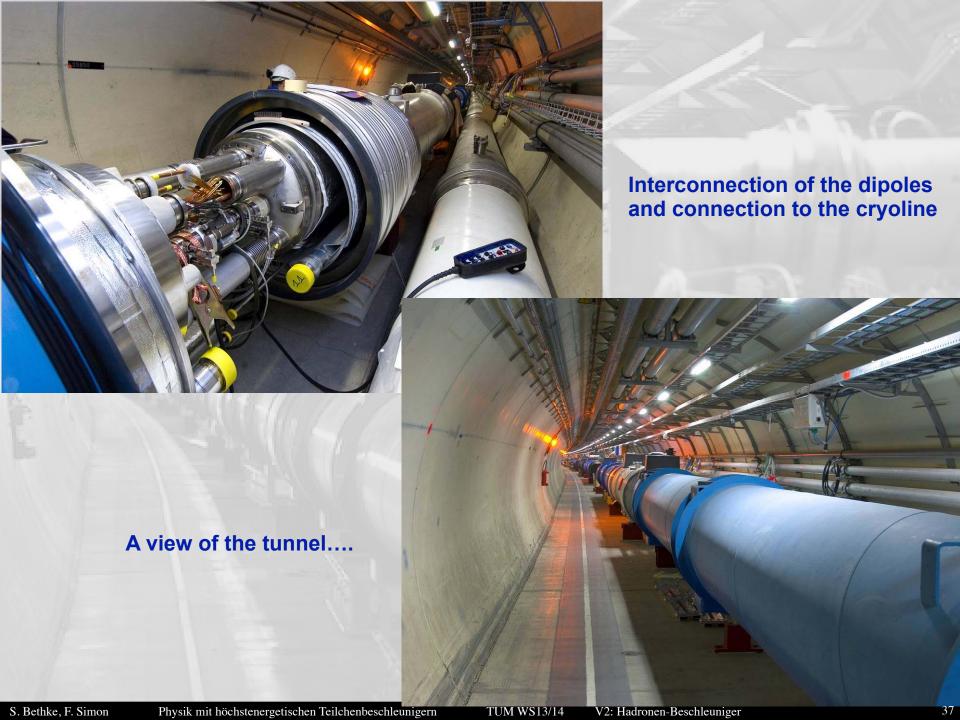
CNGS: Cern Neutrinos to Gran Sasso

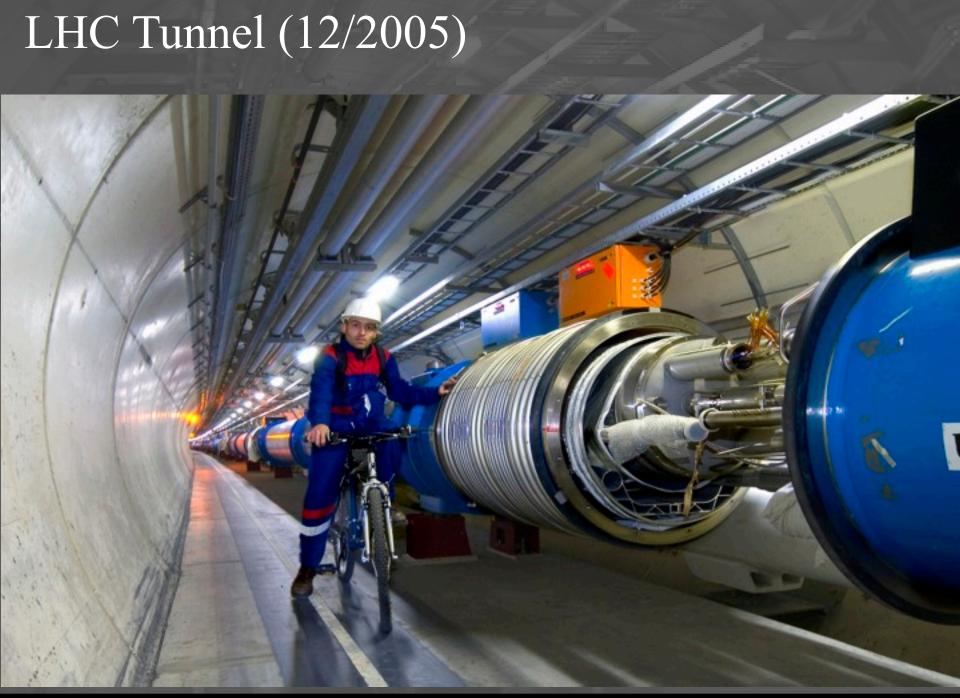


General LHC Parameters Version 4.0 (These parameters correspond to optics version 6.4 and the RF parameter update from the 14. LTC meeting (15. October 2003)) (the Version 3 parameters can be found here)

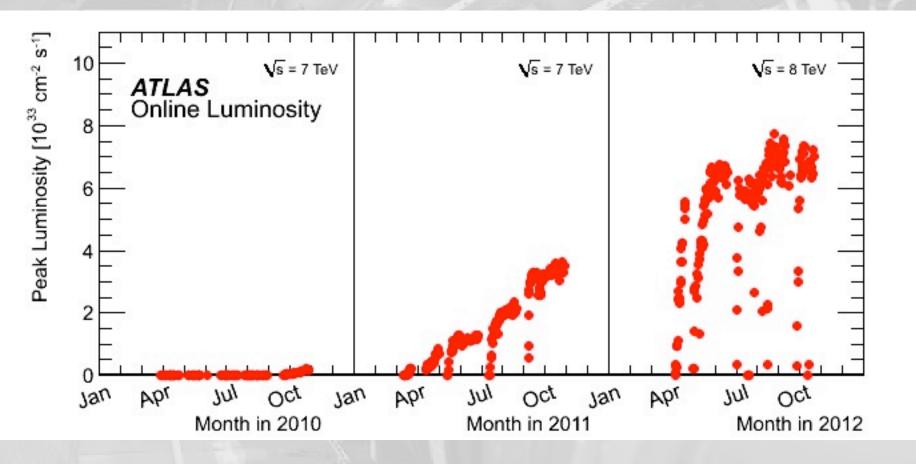

(the Version 3 parameters ca	in be found here	
Momentum at collision	7	TeV/c
Momentum at injection	450	GeV / c
Machine Circumference	26658.883	m
Revolution frequency	11.2455 (*)	kHz
Super-periodicity	1	
Lattice Type	FODO, 2-in-1	
Number of lattice cells per arc	23	
Number of insertions	8	
Number of experimental insertions	4	
Utility insertions	2 collimation 1 RF and 1 extraction	
Dipole field at 450 GeV	0.535	Т
Dipole field at 7 TeV	<u>8.33</u>	Т
Bending radius	2803.95	m
Main dipole coil inner diameter	56	mm
Distance between aperture axes (1.9 K)	<u>194</u>	mm
Main Dipole Length	<u>14.3</u>	m
Main Dipole Ends	<u>236.5</u>	mm
Half Cell Length	<u>53.45</u>	m
Phase advance per cell	90	degree
Horizontal tune at injection	<u>64.28</u>	
Vertical tune at injection	<u>59.31</u>	
Horizontal tune at collision	64.31	
Vertical tune at collision	59.32	
Maximum beta-function (cell)	177 / 180 (**)	m
Minimum beta-function (cell)	30 / 30 (**)	m

Maximum dispersion (cell)	2.018 / 0.0 (**)	m
Maximum beta-function (service insertions)	594.5 / 609.3 (**)	m
Free space for detectors	<u>+/-23</u>	m
Gamma Transition	55.678	
Momentum Compaction	0.0003225 (**)	
Main RF System	400.8	MHz
Harmonic number	35640	
Voltage of 400 MHz RF system at 7 TeV	16	MV
Synchrotron frequency at 7 TeV	23.0	Hz
Bucket area at 7 TeV	<u>7.91</u>	eV.s
Bucket half-height at 7 TeV	<u>3.56</u>	10 ⁻⁴
Voltage of 400 MHz RF system at 450 GeV	8	MV
Synchrotron frequency at 450 GeV (without 200 MHz RF)	<u>63.7</u>	Hz
Bucket area at 450 GeV	<u>1.43</u>	eV.s
Bucket half-height at 450 GeV	<u>10</u>	10 ⁻⁴
Capture RF system	200.4	MHz

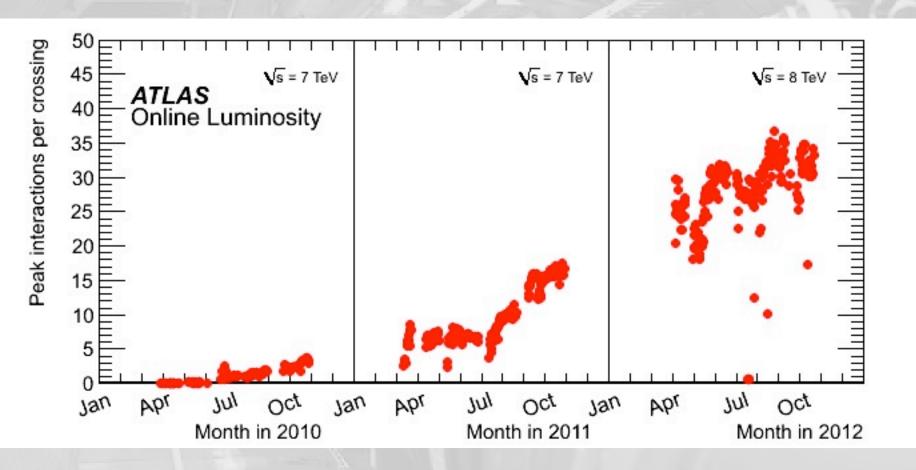

- Supraleitende Dipolmagnete
- größte Herausforderung: Magnetfeld von 9 Tesla
 - insgesamt 1300 Stück, jeweils 15 m lang
 - Betrieb bei einer Temperatur von 1.9 K



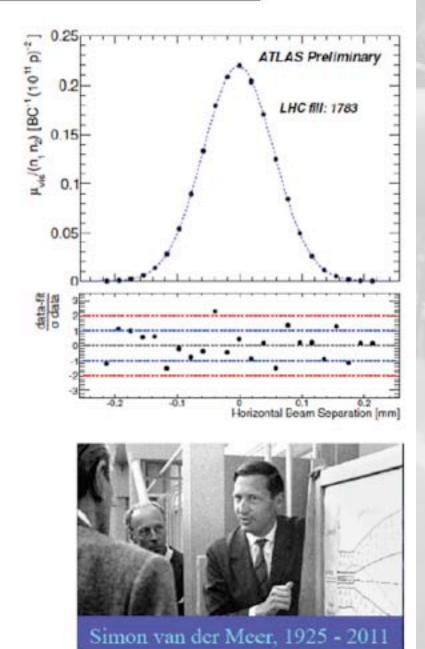
Die LHC Dipol-Magnete

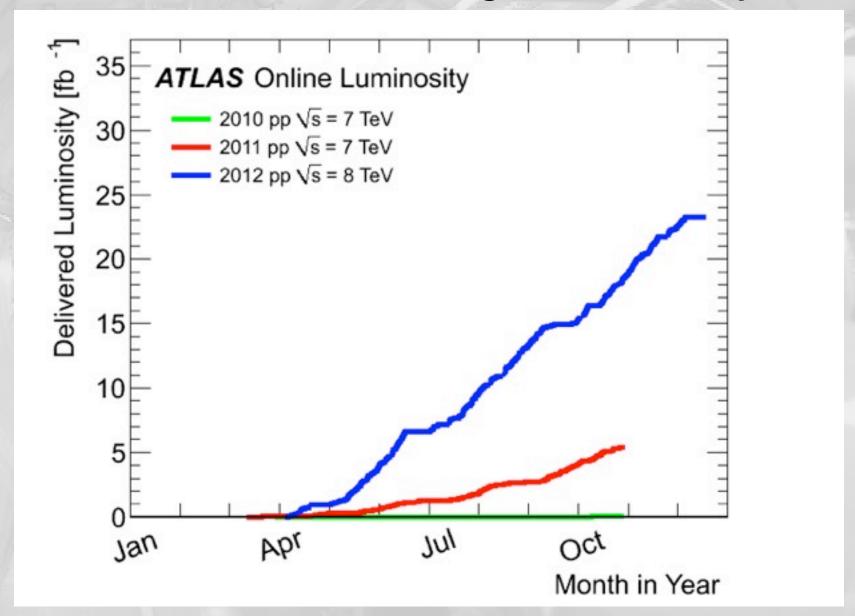


LHC - Status:


- 09.09.2008: erster stabiler "beam" im LHC:
- 19.09.2008: technische Probleme mit grosser Wirkung:
 Zerstörung eines Teils des LHC-Ringes. Reparatur: ~1 Jahr.
- 20.11.2009: Wiederanlauf nach Reparatur; Kollisionen!
- 11.12.2009: Weltrekord: Kollisionen bei 2.36 TeV! (2·1.18 TeV)
- 30.03.2010: Kollisionen bei 7 TeV (2 · 3.5 TeV)
- Nov. 2011: 5 fb⁻¹ bei 7 TeV pro Experiment
- 2012: Kollisionen bei 8 TeV
 - bis Ende Dez: ~20 fb⁻¹
 - 4. Juli 2012: ein neues Boson ...
- 2013/14: long shut-down (LS1);
- 2015/16: Betrieb bei 13-14 TeV

LHC Peak Luminosity ~ 8E33 (October 2012)


LHC: interactions per bunch x-ing


LHC luminosity determination

$$\mathcal{L} = \frac{n_{\rm b} f_{\rm r} n_1 n_2}{2\pi \Sigma_x \Sigma_y}$$

- Calibrated using van der Meer scans
- Present uncertainty ±3.7%
 - dominated by beam current measurements ±3%
 - already impressive
 - could come down by around a factor of two?

ATLAS online integ. Luminosity

Literatur / weiterführende Informationen:

- F. Hinterberger, "Physik der Teilchenbeschleuniger und Ionenoptik", Springer 2008
- H. Wiedemann, "Particle Accelerator Physics" I & II Springer 1993/1995
- K. Wille, Physik der Teilchenbeschleuniger, Teubner 2002
- Particle Data Group, http://pdg.lbl.gov
- Fermilab, <u>http://www.fnal.gov/</u>
- CERN,

 http://public.web.cern.ch/Public/ACCELERATORS/
 accintro.html

nächste Vorlesung: 28.10.

4.11.

Teilchendetektoren

11.11.

Trigger, Datennahme, Computing