<u>Tests of the Standard Model</u> <u>of electroweak interactions</u>

this lecture: • Standard Model and motivations

- W, Z production cross sections
- W mass
- W width
- triple-gauge couplings
- lecture 7: QCD, Jets, structure functions
- lecture 8: Top Quark physics

lectures 9/10: • Higgs Boson

The "Standard Model" of Particle Physics

... is rather simple (und "übersichtlich"):

Elementary Particles				Elementary Forces		
	G	enerati 2	on 3		exchange boson	relative strength
Quarks	u	С	t	Strong	g	1
	d	S	b	elmagn.	γ	1/137
.	ve	v_{u}	$\nu_{ au}$	Weak	W^{\pm}, Z^0	10-14
Leptons	e	μ	τ	Gravitation	G	10-40

... as well as anti-particles

... describes the unified electro-weak interaction and the Strong force with gauge invariant quantum field theories;

... is extremely successful in consistently and precisely describing all particle reactions observed to date

... provides a consistent (yet incomplete) picture of the evolution of the very early universe -> particle cosmology

The elektroweak standard model at hadron colliders

- based on the gauge group SU(2)xU(1)
- with gauge bosons $Z^0, W^{\scriptscriptstyle +}, W^{\scriptscriptstyle -} \left(SU(2) \right)$ and $\gamma \left(U(1) \right)$
- left-handed fermion fields transforming as doublets under SU(2) ; there are 3 fermion families
- a complex scalar Higgs doublet, φ = (φ+, φ−), is added for mass generation through sponateous symmetry breaking, with one neutral Higgs scalar H as physical particle
- e.w. SM describes, in lowest order perturbation theory ("Born Approximation"), processes like $f_1f_2 \rightarrow f_3f_4$ with only 3 free parameters: α , G_F und $\sin^2\theta_w$.

Tests of the elektroweak standard model at hadron colliders

- mainly physics with
 - el.-w. gauge bosons (W, Z, γ)
 - with top-quarks -> V8
 - with hadron jets (QCD) -> V7
- measurements of:
 - production cross sections
 - masses
 - decay rates / widths
 - decay asymmetries
 - gauge boson couplings (WW, W γ , WZ, ZZ, Z γ)

motivations for these measurements:

- in general: consistency checks with SM
- search for deviations from SM:

production, decays and properties of gauge bosons are modified by "new physics":

• indirect Higgs mass limits (from precision measurements of M $_{top}$ and M $_{w}$)

- SM processes used to measure LHC luminosity
- precisely define SM background for signals of new physics

 Z^0

precise determination of M_z und Γ_z from LEP data (e⁺e⁻ - annihilation):

 $M_{Z} = (91.1875 \pm 0.0021) \text{ GeV}$ $\Gamma_{Z} = (2.4952 \pm 0.0023) \text{ GeV}$

- this precision cannot be achieved at hadron-colliders
- therefore at LHC: LEP-results used as input
 Z⁰-decays used e.g. for calibration

production and decay of gauge bosons

- hadronic final states cannot be used, due to dominating QCD background
- theoretical uncertainties mainly due to quark-structure of protons

LHC: Beobachtung von Z/W (lept. Zerfall)

V3: Standard Model tests

10

Run Number: 152409, Event Number: 5966801

Date: 2010-04-05 06:54:50 CEST

W+ev candidate in 7 TeV collisions

 $\begin{array}{l} p_{\tau}(e+) = 34 \; GeV \\ \eta(e+) = & -0.42 \\ E_{\tau}^{\;miss} = 26 \; GeV \\ M_{\tau} = 57 \; GeV \end{array}$

WS13/14 TUM S.Bethke, F. Simon

with 20 secondary vertices ...

Tevatron und LHC

WS13/14 TUM S.Bethke, F. Simon

V3: Standard Model tests

Tevatron und LHC WS13/14 TUM S.Bethke, F. Simon V3: Standard Model tests

13

Tevatron:

Datensatz	Run I	Run IIa
W→Iv	77k	2300k
Z→II	10k	202k
WV (W→Iv, V=W,γ,Z)	90	1800
ZV (Z→II, V=W,γ,Z)	30	500
tt (mass sample, ≥1 b-tag)	20	800

Process	σ (nb)	Events/year ($\mathcal{L} = 5 \text{ fb}^{-1}$)	
$W \to e \nu$	30	~ 10 ⁸	
$Z \rightarrow e^+ e^-$	3.0	~ 107	
tī	1.6	~ 107	
Inclusive jets p _T > 200 GeV	200	~ 109	

ATLAS / LHC:

measurements of production cross sections

• Z selection: – one lepton with tight criteria

(high energy, isolation, in central region,

unambiguous detector signature)

- a second lepton with relaxed criteria
- W selection: one lepton with tight criteria
 - missing transverse energy / transv. momentum
- counting of events; corrections according to:
 - Trigger-efficiency (from data: redundant triggers,

2-lepton-events etc)

- reconstruction- and selection-efficiencies

– luminosity

$$\sigma_Z = \frac{N}{\int Ldt \cdot Br(Z^0 \to e^+ e^-) \cdot \varepsilon_{ee}}$$

Messung der Produktionsquerschnitte (Tevatron)

16

ATLAS Analyse der W/Z Produktionsquerschnitte arXiv:1010.2130v1 arXiv:1109.5141

W/Z Produktionsquerschnitte

measurements of boson masses

$$M_T = \sqrt{p_T^\ell p_T^\nu (1 - \cos \Delta \phi)}$$

ATLAS Analyse der W/Z Produktionsquerschnitte

arXiv:1109.5141

Bestimmung der W Masse

W Produktion am TeV:

1. Berechne transversale Masse

$$M_T = \sqrt{(E_T^{\ell} + E_T^{\nu})^2 - (\vec{P}_T^{\ell} + \vec{P}_T^{\nu})^2}$$

→ Verstehe E and P Skala und Auflösung

2. Bestimme fehlenden Transversalimpuls.

 $\vec{P}_T^{\nu} = -(\vec{P}_T^{\ell} + \vec{U})$

- ➔ modelliere ,Underlying event" und Rückstossverteilung , etc.
- Messung von M_W aus M_T Verteilung
 → Vergleich von Verteilung in den Daten

mit Templates

Tevatron und LHC

WS13/14 TUM S.Bethke, F. Simon

Beobachtung im Detektor:

D0: W -> e v

Zusammenfassung M_W Messungen

Aktuelle Ergebnisse und Kombination von M_w:

Direkte Messung der W Breite

Anzahl der Ereignisse mit extrem hohen M_T hängt von der WBreite ab

Indirekte Messung der W Breite

triple gauge couplings:

- SM: space-like diagrams are =0 if 2 of the 3 bosons are identical
- BSM: may contribute to triple gauge couplings in non-standard ways

Di-Boson production cross sections

29

Zusammenfassung:

- am LHC wurden detaillierte Messungen mit W und Z Bosonen durchgeführt: Produktionsquerschnitte in Übereinstimmung mit theor. Erwartungen.
- erwartet bei design-Luminositäten: 10⁸ W/a, 10⁷ Z/a
- wichtige Tests des SM: präzise Bestimmungen von
 - Massen
 - Zerfallsbreiten
 - Wirkungsquerschnitten
 - Produktionsasymmetrien
 - triple-gauge Kopplungen (grob)
- Ziel am LHC:
 \U03c0 M_w ~ 15 MeV (ATLAS & CMS combined; benötigt
 extreme exp. Genauigkeit)

· Δm_{top} ~ 2 GeV und ΔM_W ~ 15 MeV werden im SM M_{Higgs} auf ca. 25% festlegen

- Z-Boson Parameter (M_Z , Γ_Z) als input von LEP; Z⁰s als tool zur Kalibration
- erste Messungen der triple-gauge Kopplungen werden indikativ für Neue Physik

Literatur:

- G. Aad et al. (ATLAS collab.): Measurement of the W -> ℓW and Z/γ -> ℓℓ prodcution cross sections..., arXiv:1010.2130 [hep-ex], arXiv:1109.5141
- John D. Hobbs: Tests of the Standard Electroweak Model at the Energy Frontier arXiv:1003.5733v1 [hep-ex].
- J. Mnich: Standard Model Physics at the LHC, CMS-CR-2004-043, Nov 2004. 10pp. published in Czech.J.Phys.55:B515-B528,2005
- Ellis, Stirling, Webber: QCD and Collider Physics, Cambridge Monographs, 1996.