Teilchenphysik mit höchstenergetischen Beschleunigern (Tevatron und LHC)

QCD, Structure Functions, Jets

- History of the Strong Interaction
- QCD / QED
- Proton-structure: structure functions
- hadronisation
- factorisation
- hadron jets

<u>History of Strong Interactions (1)</u>

(π,K,...)

 $(p,n,\Lambda,...)$

<u>History of Strong Interactions (2)</u>

- **1964**: Statisches Quark-Modell; neue innere Quantenzahl: Farbe.
- **1969**: Dynamisches Partonenmodel:
- 1973: Konzept der Asymptotischen Freiheit; Quanten Chromo Dynamik.
- **1975**: 2-Jet Struktur in e+e--Vernichtung: Bestätigung Quark-Parton-Modell.
- **1979**: Entdeckung des Gluons in 3-Jet-Ereignissen der e+e--Vernichtung.

Fevatron und LHC

WS13/14 TUM S.Bethke, F. Simon

V7: QCD. Strukturfunktionen, Jets

<u>History of Strong Interactions (4)</u>

>2004: QCD als Untergrund bei der Suche nach Neuer Physik

Events / 2 GeV 70(Selected diphoton sample Data 2011+2012 Sig+Bkg Fit (m_=126.5 GeV) Bkg (4th order polynomial) ATLAS to be approved 400 Beispiel: Higgs-Suche 3000 2000 - Vs = 7 TeV, Ldt = 4.8 fb vs = 8 TeV, Ldt = 13.0 fb" 1000 gluon fusion 000000000 Events-Fr 300 g 200 н 110 120 130 140

(Ge

Quarks im Proton: Modell und Experiment

Erklärung: das Proton hat "harte" Bestandteile, die

QUARKS (Ch. Kiesling)

6

Quarks im Proton?

Messung des Streuwinkels und der Energie der Elektronen (2 gegebene Größen):

Streuwinkel und Impulsanteils *x* des Stoßpartners des Elektrons am Gesamtimpuls des Protons (2 Unbekannte)

Quarks und Gluonen im Proton !

Messung des Impulsanteils zeigen ein kompliziertes "Innenleben" des Protons:

Nur die Hälfte des Impulses wird von Quarks getragen, der Rest von den "Binde-Teilchen", den Gluonen

Eigenschaften der QED und der QCD:

	OED	OCD
Fermionen	<i>Leptonen</i> (<i>e</i> ,μ,τ)	Quarks (u, d, s, c, b, t)
Kraft koppelt an:	elektrische Ladung	3 Farb-Ladungen
Austausch- quantum	<i>Photon</i> (γ) (trägt keine Ladung)	$\frac{Gluonen(g)}{(\text{tragen 2 Frabladungen})} \xrightarrow[g]{g} \xrightarrow[$
Kopplungs- "Konstante"	$\alpha(Q^2=0) = \frac{1}{137}$	$\alpha_s(Q \stackrel{2}{=} M_Z^2) \approx 0.12$ $\alpha_s \stackrel{\text{Confinement}}{\underset{\text{Freiheit}}{}} \alpha_s Q^2$
Freie Teilchen	<i>Leptonen</i> (<i>e</i> ,μ,τ)	(Farbneutrale, gebundene Zustände von \overline{q} and q) Hadronen
Theorie	Störungstheorie bis zur $O(\alpha^4)$	Störungstheorie bis $O(\alpha_s^3)$
Erreichte Präzision	10 ⁻⁶ 10 ⁻⁷	1% 20%

Energieabhängigkeit der Kopplungs"konstanten":

• experimentell mit hoher Genauigkeit verifiziert

Theoretische Beschreibung hadronischer Prozesse

- Beschreibung der einzelnen Unterprozesse :
 - f(x,Q²): Partonendichte (q, g) im Proton [pdf] (Wahrscheinlichkeit, daß ein parton Bruchteil x des p-Inpulses hat)
 - $-\hat{\sigma}_{ij}(Q^2)$: "harter" QCD Wirkungsquerschnitt, z.B. von qq –> gg; qg –> q'g'
 - parton shower: QCD Abstrahlung q->qg, g->qg, g->qq
 - Hadronisation: Parametrisierung des Übergangs von q,g in Hadronen (Modelle!)
- Zerfälle: Parametrisierung nach Messungen und Spin-Statistik

11

Faktorisierungstheorem:

$$\sigma_{ij}=f_i(x_1,Q^2)f_j(x_2,Q^2)\widehat{\sigma}_{ij}(Q^2)$$

sowie sequentielle Anwendung der Prozesse "Parton Shower" und "Hadronisierung".

Strukturfunktionen:

 $F_2(x,Q^2) = \sum e_q^2 \; x \; f(x,Q^2)$

QCD Störungstheorie:

Leading order (lo) Matrixelemente z.B. für 2->2 Prozesse:

(für Präzisionsmessungen sind next-to-leading order (nlo) oder sogar nnlo Rechnungen notwendig!)

Three bound valence quarks

Three bound valence quarks + some slow debris, e.g., $g \rightarrow q\bar{q}$

lee

000

000

000

000

000

000

Protonstruktur

Protonstruktur

WS13/14 TUM S.Bethke, F. Simon

Kinematische Bereiche der Experimente

2-Jet Endzustand in Proton-Antiproton Kollision (Tevatron; DO Detektor)

180 🔶

2-Jet Endzustand in Proton-Antiproton Kollision (Tevatron; DO Detektor)

Azimutwinkel φ , Pseudorapidität $\eta = -\tan(\vartheta/2)$, Polarwinkel ϑ , transversale Energie $E_T = E \sin \vartheta$

The highest mass central dijet event and the highest- p_T jet collected by the end of October 2010: two central high- p_T jets have an invariant mass of 2.6 TeV and the highest p_T jet has p_T of 1.3 TeV.

- 1st jet (ordered by p_T): p_T = 1.3 TeV, η = 0.2, ϕ = 2.8
- 2nd jet: $p_T = 1.2 \text{ TeV}, \eta = 0.0, \phi = -0.5$
- Missing $E_T = 42$ GeV, $\phi = 1.5$
- Sum E_T = 2.2 TeV

Jet momenta are calibrated according to the "EM+JES" scheme. Event collected on 8 October 2010.

The highest jet multiplicity event collected by the end of October 2010, counting jets with p_T greater than 60 GeV: this event has eight.

- 1st jet (ordered by p_T): p_T = 290 GeV, η = -0.9, ϕ = 2.7
- 2nd jet: p_T = 220 GeV, η = 0.3, ϕ = -0.7
- Missing $E_T = 21$ GeV, $\phi = -1.9$
- Sum E_T = 890 GeV

Event with four reconstructed hadronic jets. The four jets have a calibrated $p_T > 50$ GeV, and are found with the anti-kt algorithm with R=0.6. The highest p_T jet has a calibrated jet p_T of 144 GeV. Event collected on 10 April 2010.

"pile-up":

- 10-40 Kollisionen pro Strahkreuzung
- Detektoren und Elektronik müssen mit riesigen Datenmengen fertig werden
- Physikanalyse der Daten unter extrem hohen Untergrundraten

QCD- / Jet- Produktions-Querschnitte

Physik der Hadronen-Jets

Zum Vergleich von Hadronen-Jets mit analytischen QCD -Rechnungen (Quark- und Gluonendynamik) muß man auflösbare Teilchenjets <u>Theorie und Praxis</u> definieren.

Dazu benötigt man:

- Definition eines Auflösungskriteriums (z.B. minimale invariante Paarmasse, minimale Winkel, minimale Energien ..)
- Vorschrift, wie man nichtauflösbare Jets rekombiniert.

allerdings:

Es gibt keine "natürliche" Definition von Jets !

niederenergetische "Jets" Infrarot-Divergenzen

k_T - Algorithmus und Jetdefinition:

(meistbenutzt in e e -Vernichtung; seit LHC auch in Hadron-Kollisionen)

k_T - Algorithmus und Jetdefinition:

für jedes Objekt eines Ereignisses (Parton, Teilchen, Energie-Cluster) wird berechnet:

$$d_{ij} = \min(k_{t,i}^2, k_{t,j}^2) \frac{(\Delta R)_{ij}^2}{R^2};$$

$$d_{iB} = k_{t,i}^2$$

mit
$$(\Delta R)_{ij}^2 = (y_i - y_j)^2 + (\phi_i - \phi_j)^2$$

- *k*_{t,i} : transversaler Impuls bezügl. Strahlachse
- $\boldsymbol{\varphi}_i$: azimutaler Winkel
- **y** : Rapidität; = 1/2 ln [(E+p_z) / (E-p_z)]

*d*_{ij}: Abstandsmass zwischen zwei Objekten i, j

*d*_{iB} : Abstandsmass zwischen Objekt und Strahlachse

eine Liste aller d_{ij} und d_{iB} wird erstellt. Falls der kleinste Eintrag d_{ij} ist, werden Objekte i und j kombiniert (Addition der 4er-Verktoren); falls d_{iB} der kleinste ist, wird Objekt i als "Jet" definiert und aus der Liste entfernt.

R : "Auflösungsparameter", bei dem Objekte i und j noch getrennt werden können.

anti-k_T - Algorithmus und Jetdefinition:

$$d_{ij} = \min(k_{t,i}^{-2}, k_{t,j}^{-2}) \frac{(\Delta R)_{ij}^2}{R^2}$$
$$d_{iB} = k_{t,i}^{-2}$$

(derzeit meist gebräuchlich am LHC, mit R = 0.4, 0.6)

Anmerkungen zum k_T - Jetalgorithmus

- die Jetdefinition über den Auflösungsparameter $d_{ij} = 1/2 \min(E_i^2, E_j^2) (1-\cos \theta_{ij})$ ist eine Abwandlung der Formel für die invariante Paarmasse zweier masselose Teilchen: $M_{ij}^2 = E_i E_j (1-\cos \theta_{ij})$ --- die historisch vor Einführung des k_T Algorithmus verwendet wurde (unter dem Namen "JADE" Algorithmus).
- die k_T Jetdefinition ist infrarot und kollinear sicher, d.h. Berechnungen in QCD Störungstheorie sind möglich und verfügbar. Die Benutzung von d_{ij} anstelle der mehr intuitiven Paarmasse hat Vorteile bei der theoretischen Berechnung; u.a. können durch einen mathematischen Trick führende Beiträge zu höheren Ordnungen aufsummiert werden, was bei der JADE Definition nicht möglich war.
- der k_T Algorithmus hat sich besonders in der Analyse von Jets in der e+e- Vernichtung (zB bei LEP) als sehr erfolgreich erwiesen, sowohl in experimenteller wie in theoretischer Sicht.
- am Hadron Collider muss bei Adaption des k_T Algorithmus besondere Rücksicht auf die durch die weiterfliegenden Proton-Reste verursachten "remnant jets" bzw. das "underlying event" in Vorwärts-/Rückwärts-Richtung genommen werden -- geschieht über die Definition von d_{iB}

Cone-Jet Algorithmus:

- JetClu: CDF's Run I algorithm
 - Create E_T -ordered list of calorimeter towers (seed towers: $E_T > 1$ GeV).
 - Build pre-clusters from adjacent seed towers beginning with the highest E_T tower.
 - For each pre-cluster: Calculate centroid;

iterate cone using all towers above 100 MeV $(\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} < R_{\text{cone}}).$

- "Ratcheting": During the iteration no seed tower of the original pre-cluster ever leaves the cone! (Pre-clusters remain connected to cones.)
- Two overlapping stable cones are merged if more than 75% of the transverse energy of one of the cones is shared by the other one.
 Otherwise the cones are split by distributing the shared energy among the cones.

(CDF-specific, iterative)

- JetClu is neither infrared safe nor collinear safe.
- Yet, JetClu is being used in CDF's Run II Level 3 trigger and for some analyses (backward compatibility).

Anmerkungen zum Cone - Jetalgorithmus

- der Cone-Algorithmus ist historisch der am längsten und meist benutzte Jetalgorithmus in der Analyse von Hadron Kollisionen (Tevatron).
- seine Definition und Anwendung ist i.w. durch experimentelle Randbedingungen (Zellgrösse hadronischer Kalorimeter) und technischer Details bestimmt; in der Vergangenheit hat daher auch jedes Experiment (zB CDF und D0 am Tevatron) leicht verschiedene Variationen des Cone-Algorithmus benutzt.
- der Cone-Algorithmus ist weder infrarot not kollinear sicher, kann daher nicht für QCD Präzisionsstudien verwendet werden.
- wegen der langen exp. Erfahrung mit dem Cone-Algorithmus wird dieser auch weiterhin am Tevatron dominant (und zT auch am LHC) benutzt werden; hier besonders für technische Studien (z.B. Isolation von Leptonen, Ereignisklassifizierung, jet tagging etc).

Jet-Wirkungsquerschnitt am LHC

- Studie: Single-Jet-Spektrum nach einer Laufzeit von etwa 1 Jahr (10⁷s), bei niedriger Luminosität (L = 10³²cm⁻²s⁻¹): ∫ L dt = 1 fb⁻¹
- Messung bis 1 TeV sehr früh möglich
- Unsicherheiten:
 - Jet-Energieskala
 - Energieauflösung
 - Triggereffizienzen
 - Luminosität

Jet Multiplizitäten

Measurement of event shapes at large momentum transfer

Eur. Phys. J. C (2012) 72: 2211

<u>Measurement of the ratio</u> <u>of the inclusive 3-jet cross section</u> <u>to the inclusive 2-jet cross section</u> <u>and first determination</u> <u>of the strong coupling constant in the TeV range</u>

- measurement of $R_{32} = R_{3jet}/R_{2-jet}$ as function of $Q = p_{T1,2} = (p_{T,1}+p_{T,2})/2$
- use anti-k_T algorithm with R=0.7
- most exp. uncertainties cancel in ratio
- comparison to QCD predictions (NLO) as function of coupling strength $\alpha_s(Q)$

R₃₂ as function of p_{T1,2}

arXiv:1304.7498

Jet Paar-Massen und Suche nach neuen schweren Teilchen: excited Quarks

Produktion angeregter Quarks ausgeschlossen im Massen-Intervall 0.3 < m < 3 TeV (Tevatron limit: 0.8 TeV)

Zusammenfassung

- QCD (d.h. die Starke Wechselwirkung) dominiert bei weitem die Reaktionsraten an Tevatron und LHC (σ_{tot} in nebenstehender Graphik)
- neben dezidierten QCD Studien wie der Bestimmung von α_s ist die genaue Kenntnis der QCD Prozesse unabdingbar für das Finden und die Vermessung neuer physikalischer Effekte am LHC (e.g. Higgs, SUSY, large extra dimensions).
- QCD beschreibt die Dynamik von Quarks und Gluonen. Die Beschreibung von Hadronen ist nur durch Zuhilfenahme von Hadronisierungsmodellen möglich.
- alternativ werden Hadronenjets definiert und analysiert; Jets können theoretisch mit Quarks und Gluonen assoziiert und berechnet werden.

(proton - proton)

ь

Literaturempfehlungen

- Ellis, Stirling, Webber: "QCD and Collider Physics", Cambridge Monographics,
- A QCD primer, G. Altarelli, CERN School 2001, https://cdsweb.cern.ch/record/619179/files/p65.pdf
- Quantum Chromodynamics, M.H.Seymour, 2004 European School of High-Energy Physics, hep-ph/0505192
- Measurement of inclusive jet and dijet cross sections ..., ATLAS Collaboration, arXiv:1009.5908v2, <u>Eur.Phys.J. C71 (2011) 1512</u>
- Measurement of the ratio of the inclusive 3-jet cross section to the inclusive 2-jet cross section in pp collisions at sqrt(s) = 7 TeV and first determination of the strong coupling constant in the TeV range; CMS collab., arXiv:1304.7498.

nächste Vorlesungen:

09.12.2013: Top-Quark Physik

16.12.2013: Higgs Physik (I)