Lecture 9:

The search for the (SM) Higgs Boson

- theoretical basics
- Higgs production and decay
- Higgs search in e⁺e⁻ annihilation
 - direct search
 - indirect mass limits from electroweak radiation corrections
- Higgs searches in hadron collisions
 - Tevatron

– LHC (-> next lecture (2014))

<u>The Standard Model Higgs Boson:</u> <u>theoretical basics and expectations</u>

- gauge field theory with gauge symmetry in weak isospin/hyper charge [SU(2) x U(1)] to describe electromagnetic and weak interactions of quarks and leptons: includes massless gauge bosons (γ, Z⁰, W⁺, W⁻) and fermions
- any attempt to include mass terms breaks gauge symmetry and destroys renormalizabilty of the theories
- Englert, Brout and Higgs (1964): spontaneous symmetry breaking (generates mass, keeps renormalizabilty):
- introduction of complex SU(2) doublets of scalar fields with a potential of $V(\phi) = \lambda (\phi^+ \phi)^2 \mu^2 \phi^+ \phi$; with $\lambda, \mu^2 > 0$;

$$= \begin{pmatrix} \phi_1 + i\phi_2 \\ \phi_3 + i\phi_4 \end{pmatrix}$$

- V does not have minimum at $\phi = 0$, but at $|\phi| = \sqrt{\frac{\mu^2}{2\lambda}} = \frac{v}{\sqrt{2}}$
- 3 of the 4 real degrees of freedom are used to generate the longitudinal spin d.o.f. of Z⁰ and W[±];
 4. d.o.f. -> physical Higgs particle!

φ

theoretical basis and expectations

• inserting ϕ in Lagrange function results in 3 massive vector fields, 1 massless vector-field, plus one massive scalar field with

$$M_{W} = \frac{1}{2}gv \implies v = 246 \text{ GeV}$$

$$M_{Z} = M_{W}/\cos\theta_{w} \qquad (g = e/\sin\theta_{w})$$

$$M_{\gamma} = 0$$

$$M_{H} = 2\mu^{2} = 2\lambda v^{2}$$

- introduction of Yukawa-couplings g_f between ϕ and the fermion fields: generates fermion masses $m_f = g_f v / \sqrt{2}$
- fundamental fermion-Higgs couplings:

theoretical basis and expectations

theoretical bounds for M_H from self-consistency arguments of the Standard-Model:

- upper bounds: perturbativity
- lower bounds: vakuum stability

n.b.: if SM is valid only up to $\Lambda = O(1 \text{ TeV}),$ then $M_H = 50 \dots 1000 \text{ GeV}$

n.b.: if SM is valid up to $\Lambda = O(M_{Planck})$ then $M_H = 130 \dots 180 \text{ GeV}$

 Λ : energy scale up to which SM is valid

Higgs: production and decays

Tevatron und LHC

<u>Higgs: decays</u>

 $M_H < \sim 135 \text{ GeV}$: dominanter Zerfallskanal H –> b b $M_H > \sim 135 \text{ GeV}$: dominanter Zerfallskanal H –> W⁺W⁻

WS13/14 TUM S.Bethke, F. Simon

Higgs: decays

Ordered by the sensitivity to the signal:

- $H \rightarrow ZZ \rightarrow (\ell^+ \ell^-)(\ell^+ \ell^-)$
- $H \rightarrow \gamma \gamma$
- $H \rightarrow WW \rightarrow (\ell^+ \nu)(\ell^- \nu)$
- $H \rightarrow \tau^+ \tau^-$ (large background)
- $H \rightarrow b\bar{b}$ (large background)

Ordered by the sensitivity to the signal:

- $H \rightarrow ZZ \rightarrow (\ell^+ \ell^-)(\ell^+ \ell^-)$
- $H \rightarrow ZZ \rightarrow (\ell^+ \ell^-)(\nu \nu)$
- $H \rightarrow ZZ \rightarrow (\ell^+ \ell^-)(q\bar{q})$
- $H \rightarrow WW \rightarrow (\ell^+ \nu)(\ell^- \nu)$
- $H \rightarrow WW \rightarrow (\ell^+ \nu)(qq)$

Higgs: production

e⁺e⁻ annihilation

<u>Higgs: production</u>

Standard Model Higgs Boson @ Tevatron

WS13/14 TUM S.Bethke, F. Simon

Higgs: production

WS13/14 TUM S.Bethke, F. Simon

Higgs: production

WS13/14 TUM S.Bethke, F. Simon

Higgs production cross-sections

<u>Higgs search</u>

<u>Higgs-search in e⁺e⁻ annihilation: direct</u>

search includes ~ 80% of all final states with ~ 40 - 50% selection efficiency Tevatron und LHC WS13/14 TUM S.Bethke, F. Simon V9: Higgs Suche

<u>Higgs-search in e⁺e⁻ annihilation: direct</u>

L3: Candidate event for ee --> HZ --> eeqq

LEP: from direct search M_H > 114.1 GeV

Tevatron und LHC

WS13/14 TUM S.Bethke, F. Simon

<u>Higgs-search in e⁺e⁻ annihilation: indirect</u>

radiation corrections in SM:

photonic corrections:

Tevatron und LHC

corrections ~ 100%, selection dependent: factorisable: $(1 + \delta_{rad})$

non-photonic corrections:

WS13/14 TUM

S.Bethke, F. Simon

corrections ~ 10%, selection independent; can be absorbed into running coupling constants:

•
$$\sin^2 \theta_{\text{eff}}(s)$$

• $\alpha(s) = \frac{\alpha}{1 - \Delta \alpha}$; $\Delta \alpha = 1.064$ bei $\sqrt{s} = M_Z$
• $N_{\text{c,f}} \left(1 + \frac{\alpha_s}{\pi} + 1.4 \left(\frac{\alpha_s}{\pi} \right)^2 + ... \right)$ (für Quarks)
• $\frac{M_W^2}{M_Z^2} = \rho \cdot \cos^2 \theta_w$ mit $\rho = \frac{1}{1 - \Delta \rho}$; $\Delta \rho = 0.0026 \frac{M_t^2}{M_Z^2} - 0.0015 \ln \left(\frac{M_H}{M_w} \right)$

<u>Higgs-search in e⁺e⁻ annihilation: indirect</u>

insertion of running couplings into "Born"-approximation :

partial decay widths of Z:

$$\Gamma_{\rm f} = \frac{G_{\rm f} \ M_{\rm z}^3}{6\pi\sqrt{2}} \Big[g_{\rm a,f}^2 + g_{\rm v,f}^2 \Big] \qquad ({\rm ar}$$

• M_H

• α ,

and thus, also the

cross sections) become dependent on: • M₊

==> indirect determination (fit) of M_t, M_H, und α_s from combination of all available electro-weak observables (differential cross sections, partial decay widths, forwardbackward asymmetries, **T**-polarisation, ...)

 $g_{a,f} = I_{3,f}$ (3. Komponente schw. Isospin; = ±1/2)

$$g_{v,f} = I_{3,f} - 2Q\sin^2\theta_w$$

Higgs-search in e⁺e⁻ annihilation: indirect

n.b.: at the end of LEP (2000), indication for few events with $M_H \sim 115$ GeV (~2.3 std. dev.)

WS13/14 TUM

Higgs-Search at Hadron colliders: Tevatron

 $\begin{array}{ll} M_{H} < {\sim}\,135 \; GeV \!\!\!\!: \; dominant\; decay & H \, {-}{>} \; b \; \overline{b} \; \left({\sim}\,90\% \right) \\ & H \, {-}{>} \; \tau^{+} \tau^{-} \left({\sim} \; 8\% \right) \end{array}$

 $M_H > \sim 135 \; GeV: \; dominant \; decay \; \; H \rightarrow \; W^+W^-$

Hadroncollider: b b background from QCD processes dominates; unreducible;

= g g - H - b b cannot be used

therefore:

focus on associate production (ZH, WH) and analyse e.g. Z \rightarrow |⁺|⁻ ; H \rightarrow bb

 $\tau\tau$ decay suitable for all production channels

Higgs-Search at Hadron colliders: Tevatron

very difficult measurement; background must be known extremely well!

Tevatron und LHC

WS13/14 TUM S.Bethke, F. Simon

Collider Run II Integrated Luminosity (delivered)

Tevatron was shut down on Sept. 29, 2011, after 26 years of colliding p and \overline{p}

WS13/14 TUM S.Bethke, F. Simon

Expected Tevatron sensititvity

2xCDF Preliminary Projection

–> exclusion expected: 100 - 117 und 150 - 179 GeV; 5 σ not reached

$H \rightarrow WW \rightarrow l\nu l\nu$

- Basic event selection is two reconstructed leptons and missing E_T
- Presence of two neutrinos in final state prevents complete Higgs mass reconstruction
- Separate potential signal from large backgrounds using kinematic event information

$H \rightarrow WW \rightarrow l\nu l\nu$

- Results from thirteen independent search samples are combined to obtain the best possible sensitivity
- No significant, observed excesses in data above predicted SM background contributions

H→bb

- Tevatron searches in this decay mode are still the world's most sensitive
- Basic event selection is
 0, 1, or 2 leptons and/or
 missing E_T plus two high
 E_T jets
- Challenge is separating the small number of potential signal events from the much larger SM background contributions

ZH→vvbb

H→bb

Focus on Increasing lepton reconstruction and selection efficiencies

Improving the efficiency for tagging bottom quark jets

Optimizing dijet mass resolution

Tevatron und LHC

WS13/14 TUM S.Bethke, F. Simon

CDF/D0 combined conclusion (July 2012):

- SM Higgs exclusion in the range 147-180 (and 100-103) GeV @95% CL
 Expected exclusion range 139-184 GeV
 2.5 σ excess in region
 - 115-135 GeV (3.0 **σ** at M_H=125 GeV)

observed signal strength:

V9: Higgs Suche

Summary SM Higgs-search w/o LHC data (2012):

<u>Higgs-search and discovery at LHC (preview):</u>

<u>Literatur:</u>

- Higgs Particle: The Origin of Mass. <u>Yasuhiro Okada</u> (<u>KEK, Tsukuba</u> & <u>Tsukuba</u>, <u>Graduate U.</u>
 <u>Adv. Studies</u>). KEK-TH-1171, Aug 2007. 13pp. e-Print: arXiv:0708.2016 [hep-ph]
- Higgs Boson Properties in the Standard Model and its Supersymmetric Extensions.
 John R. Ellis (CERN), Giovanni Ridolfi (INFN, Genoa & Genoa U.), Fabio Zwirner (Padua U. & INFN, Padua). CERN-PH-TH-2007-012, Feb 2007. Published in Comptes Rendus Physique 8:999-1012,2007. e-Print: hep-ph/0702114
- The Tevatron Higgs exclusion limits and theoretical uncertainties: a critical appraisal.
 J. Baglio, A. Djouadi, S. Ferrag, R.M. Godbole, . CERN-PH-TH-2010-315, LPT-ORSAY-10-107, Jan 2011. 4pp. Temporary entry e-Print: arXiv:1101.1832 [hep-ph]
- Updated Combination of CDF and D0 Searches for Standard Model Higgs Boson Production with up to 10.0 fb-1 of Data, <u>http://arxiv.org/abs/1207.0449</u>.