

Recent advances in field theory dualities from string theory

Iñaki García-Etxebarria

20th January, 2014

Equivalence of two different descriptions of a physical system, either as exactly equivalent and complementary descriptions:

- Montonen-Olive duality in $\mathcal{N}=4$ SYM
- T-duality (and mirror symmetry)
- AdS/CFT

Introduction

• Gaiotto style $\mathcal{N}=2$ dualities

Dualities in field theory and string theory

Equivalence of two different descriptions of a physical system, either as exactly equivalent and complementary descriptions:

- Montonen-Olive duality in $\mathcal{N}=4$ SYM
- T-duality (and mirror symmetry)
- AdS/CFT
- ullet Gaiotto style ${\cal N}=2$ dualities

Or, slightly more generally, various different UV descriptions of the same IR physics (*Seiberg duality*).

Equivalence of two different descriptions of a physical system, either as exactly equivalent and complementary descriptions:

- Montonen-Olive duality in $\mathcal{N}=4$ SYM
- T-duality (and mirror symmetry)
- AdS/CFT
- Gaiotto style $\mathcal{N}=2$ dualities

Or, slightly more generally, various different UV descriptions of the same IR physics (*Seiberg duality*).

Goal

Introduction

Understand better the strongly coupled dynamics of QFT.

String theory as a duality generator

Many of these dualities can be formulated purely in field theory, without knowing any string theory:

- $\bullet \ \ \mathsf{Montonen}\text{-}\mathsf{Olive} \ \mathsf{duality} \ \mathsf{in} \ \mathcal{N} = 4 \ \mathsf{SYM}$
- T-duality (and mirror symmetry)
- AdS/CFT
- ullet Gaiotto style $\mathcal{N}=2$ dualities
- Seiberg duality

String theory as a duality generator

Many of these dualities can be formulated purely in field theory, without knowing any string theory:

- \bullet Montonen-Olive duality in $\mathcal{N}=4$ SYM
- T-duality (and mirror symmetry)
- AdS/CFT
- Gaiotto style $\mathcal{N}=2$ dualities
- Seiberg duality

But string theory provides a fantastic tool to **predict** and **analyze** field theory dualities.

Seiberg duality

Seiberg duality

Basic form of the duality

Given a theory A flowing to a non-trivial IR fixed point, there is a (different) theory B flowing to the same IR fixed point.

Seiberg duality

Basic form of the duality

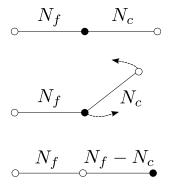
Given a theory A flowing to a non-trivial IR fixed point, there is a (different) theory B flowing to the same IR fixed point.

Basic example: 4d $\mathcal{N}=1$ SQCD with gauge group $SU(N_c)$ and N_f flavors (Q, \widetilde{Q} chiral multiplets in the fundamental rep.)

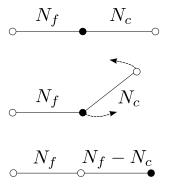
Basic form of the duality

Given a theory A flowing to a non-trivial IR fixed point, there is a (different) theory B flowing to the same IR fixed point.

Basic example: 4d $\mathcal{N}=1$ SQCD with gauge group $SU(N_c)$ and N_f flavors $(Q,\,\widetilde{Q}$ chiral multiplets in the fundamental rep.)


flows to the same IR fixed point as

SQCD with gauge group $SU(N_f-N_c)$, N_f flavors q, \widetilde{q} , a neutral meson M in the adjoint of the flavor group, and superpotential


$$W = \operatorname{Tr}\left(qM\widetilde{q}\right)$$

Seiberg duality from string theory

The duality in string theory:

The duality in string theory:

Very easy to generalize, and obtain other dual pairs.

Montonen-Olive duality

Given a 4d $\mathcal{N}=4$ field theory with gauge group G and gauge coupling $\tau = \theta + i/q^2$, there is a completely equivalent description with gauge group G^{\vee} and coupling $-1/\tau$ (for $\theta=0$ this is $q \leftrightarrow 1/q$). Examples:

G	G^{ee}
U(1)	U(1)
U(N)	U(N)
SU(N)	$SU(N)/\mathbb{Z}_N$
SO(2N+1)	Sp(2N)

Very non-perturbative duality, exchanges gauge bosons with monopoles! (So, the usual field theory tools are not particularly illuminating here.)

Montonen-Olive duality

Conjectured self-duality of type IIB string theory

Type IIB with axio-dilaton coupling τ is equivalent to type IIB with axio-dilaton $-1/\tau$.

Conjectured self-duality of type IIB string theory

Type IIB with axio-dilaton coupling τ is equivalent to type IIB with axio-dilaton $-1/\tau$.

Duality dictionary:

- D3 ← D3.
- $O3^+ \leftrightarrow \widetilde{O3}^-$
- (p,q) 7-brane \longleftrightarrow (-q,p) 7-brane.
-

Montonen-Olive duality from string theory

Just "engineer" the field theory one wants in string theory, and apply the string theory duality dictionary to the construction.

Montonen-Olive duality from string theory

Just "engineer" the field theory one wants in string theory, and apply the string theory duality dictionary to the construction.

For example, $\mathcal{N}=4$ U(N) theory is the low energy description of N D3s on flat space. Using the duality dictionary, one gets $U(N)^{\vee} = U(N).$

Just "engineer" the field theory one wants in string theory, and apply the string theory duality dictionary to the construction.

For example, $\mathcal{N}=4$ U(N) theory is the low energy description of N D3s on flat space. Using the duality dictionary, one gets $U(N)^{\vee} = U(N).$

More interestingly, SO(2N+1) is the low energy theory for 2ND3s on top of a $O3^-$. Applying the duality dictionary, this is 2ND3s on top of a $O3^+$, which at low energies gives $SO(2N+1)^{\vee} = Sp(2N).$

Just "engineer" the field theory one wants in string theory, and apply the string theory duality dictionary to the construction.

For example, $\mathcal{N}=4$ U(N) theory is the low energy description of N D3s on flat space. Using the duality dictionary, one gets $U(N)^{\vee} = U(N).$

More interestingly, SO(2N+1) is the low energy theory for 2ND3s on top of a $O3^-$. Applying the duality dictionary, this is 2ND3s on top of a $O3^+$, which at low energies gives $SO(2N+1)^{\vee} = Sp(2N).$

Beautiful field theory insights follow trivially from the duality dictionary. For example, the gauge boson wo monopole map follows easily from the $F1 \leftrightarrow D1$ duality dictionary entry.

Beyond $\mathcal{N}=4$

Montonen-Olive is defined for $\mathcal{N}=4$, but IIB S-duality is believed to hold in general. Can we get some mileage out of this?

Beyond $\mathcal{N}=4$

Montonen-Olive is defined for $\mathcal{N}=4$, but IIB S-duality is believed to hold in general. Can we get some mileage out of this?

New $\mathcal{N}=1$ dualities

Engineer certain $\mathcal{N}=1$ theories in IIB, develop the S-duality dictionary as needed, and read the effect of strong/weak duality on $\mathcal{N}=1$ theories.

Beyond $\mathcal{N}=4$

Montonen-Olive is defined for $\mathcal{N}=4$, but IIB S-duality is believed to hold in general. Can we get some mileage out of this?

New $\mathcal{N}=1$ dualities

Engineer certain $\mathcal{N}=1$ theories in IIB, develop the S-duality dictionary as needed, and read the effect of strong/weak duality on $\mathcal{N}=1$ theories.

Work in collaboration with B. Heidenreich and T. Wrase arXiv:1210.7799, arXiv:1307.1701 and work to appear

(here $\widetilde{N} \in 2\mathbb{Z}$) is dual to

in both cases with $W = \frac{1}{2} \epsilon_{ijk} \operatorname{Tr} A^i A^j B^k$.

New $\mathcal{N} = 1$ dualities

The resulting dual pairs are very interesting

- Non-conformal
- Chiral
- $\mathcal{N} = 1$ (or $\mathcal{N} = 0$)

so, much more realistic than $\mathcal{N}=4$...

New $\mathcal{N}=1$ dualities

The resulting dual pairs are very interesting

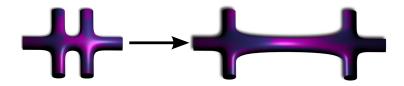
- Non-conformal
- Chiral
- $\mathcal{N}=1$ (or $\mathcal{N}=0$)

so, much more realistic than $\mathcal{N}=4$...

A number of very non-trivial checks pass with flying colors

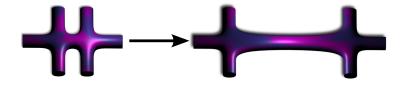
- Moduli space matching
- IR quantum dynamics match (when understood)
- 't Hooft anomaly matching
- Superconformal index matching

Qualities from Niemann surfaces

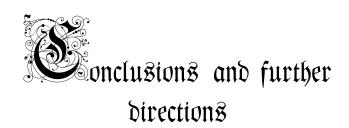

A large class of $\mathcal{N}=2$ theories can be constructed from M5 branes wrapping a (2d) Riemann surface Σ .

A large class of $\mathcal{N}=2$ theories can be constructed from M5 branes wrapping a (2d) Riemann surface Σ .

By studying different degeneration limits of Σ one obtains candidate dual descriptions for the same theory (Gaiotto).


A large class of $\mathcal{N}=2$ theories can be constructed from M5branes wrapping a (2d) Riemann surface Σ .

By studying different degeneration limits of Σ one obtains candidate dual descriptions for the same theory (Gaiotto).



A large class of $\mathcal{N}=2$ theories can be constructed from M5 branes wrapping a (2d) Riemann surface Σ .

By studying different degeneration limits of Σ one obtains candidate dual descriptions for the same theory (Gaiotto).

Deep relation between the 4d theory and the theory in the 2d surface. (Alday, Gaiotto, Tachikawa)

Main lesson

String theory has an amazingly deep and beautiful connection with 4d field theories.

Main lesson

String theory has an amazingly deep and beautiful connection with 4d field theories.

Very non-trivial statements in field theory translate into beautiful constructions in string theory, which often point to powerful generalizations, and illuminate the physics considerably.

Main lesson

String theory has an amazingly deep and beautiful connection with 4d field theories.

Very non-trivial statements in field theory translate into beautiful constructions in string theory, which often point to powerful generalizations, and illuminate the physics considerably.

If you see a beautiful field theory phenomenon, chances are that it becomes even prettier when formulated in string theory.

Further directions

Much to explore along these lines:

- Seiberg dualities for exceptional groups
- $\mathcal{N} = 0$ "Montonen-Olive" dualities (Hook, Torroba)
- Confinement as a dual Meissner effect (Sugimoto)
- $\mathcal{N}=1$ generalizations of $\mathcal{N}=2$ dualities (Xie)
-