VXD Simulation and Reconstruction: Overview

Peter Kvasnička Charles University in Prague

In this talk

PXD and SVD

- 1. simulation
- 2. clustering
- 3. hit reconstruction
 - what is implemented
 - what is missing
 - what for the testbeam

SVD and SVD DAQ

PXD and SVD simulation

Clustering

- Clusters formed from digits with signals over a fixed (zero-suppression) threshold
- (fast) 2D clustering used both for PXD (u,v) and SVD (u/v, time)
- SVDDigits are single APV samples due to uncertainty about readout modes

PXD/SVD hit position reconstruction

- Simple expressions for hit positions and their uncertainties based on the classical Turchetta's* paper
 - Exception: "Unseen charge" method used to estimate errors in cluster sizes 1,2 for PXD, and 1 in SVD.
 - Cluster shape is taken into account when forming the error covariance matrix for PXD.
- Centre-of-gravity for cluster sizes <3, analog head-tail for larger sizes.
- So far:
 - no η correction implemented
 - no special analysis of large clusters,
 - no attempt to merge long clusters

*Turchetta, R. : Spatial resolution of silicon microstrip detectors. Nuclear Instruments and Methods in Physics Research A335 (1993) 44-58

Unseen charge estimate

Motivation:

Estimate position error of a size 1 cluster.

- Position estimate is clear the centre of the strip/pixel.
- The usual error estimate of pitch/sqrt(12) is wrong.
- We don't only have the one signal, we also have zero signals in neighbours.
- The higher the signal, the more sure we can be the actual position is near the centre of the pixel/strip.
- The same works to obtain better error estimates for size 2 clusters.

Hit reconstruction in the SVD

Hit position: u_{c} or v_{c} Hit position error: σ_{μ} or σ_{ν} Positions and their errors are calculated separately for u and v strips. There is no information on correlation. u_i strip position S_i strip signal S cluster charge p strip pitch size in u = 1 $\sigma_u = p_u \frac{S_{thr}}{S+S_{thr}}, S_{thr} - 0$ -suppression cut Center of strip size in u = 2 $u_c = \frac{S_1 u_1 + S_2 u_2}{S_1 u_1 + S_2 u_2}$ $\sigma_u = a p_u \frac{S_e}{S}$, S_e - strip noise, a = 1.4size in u > 2 $u_{c} = \frac{u_{h} + u_{t}}{2} + p_{u} \frac{S_{h} - S_{t}}{2S_{0}}, \quad S_{0} = \sum_{i \neq i} S_{i} \qquad \sigma_{u} = \frac{p_{u}}{2} \left[2 \left(\frac{S_{thr}}{S_{0}} \right)^{2} + \frac{1}{2} \left(\frac{S_{h}}{S_{0}} \right)^{2} + \frac{1}{2} \left(\frac{S_{t}}{S_{0}} \right)^{2} \right]^{1/2}$ The same formulas are used for **v**

Hit reconstruction in the PXD

PXD (and SVD) data processing in basf2: Overview

Data objects

SVDSimHit: Record of a single Geant4 step /** ID of the sensor the energy was deposited in */ unsigned short m sensorID; /** PDG Code of the particle producing the Hit */ int m pdg; /** Theta angle of particle */ float m theta; /** Deposited energy in electrons */ float m energyDep; /** Time of energy deposition */ float m globalTime; /** Start point of energy deposition in local coordinates */ TVector3 m posIn; /** End point of energy deposition in local coordinates */ TVector3 m posOut; /** Momentum of particle at start of energy deposition */ TVector3 m momIn;

SVDDigit: Record of a single strip signal sample

<pre>unsigned short m_sensorID;</pre>	/**< Compressed sensor identifier.*/
<pre>bool m_isU;</pre>	/**< True if U, false if V. */
<pre>short m_cellID;</pre>	/**< Strip coordinate in pitch units. */
<pre>float m_cellPosition;</pre>	/**< Absolute strip position, -temporary */
<pre>float m_charge;</pre>	/**< Strip signal. */
<pre>double m_time;</pre>	/**< Time when the <u>sampel</u> was taken. */

SVDCluster: A hit reconstructed from strip signals

<pre>unsigned short m_sensorID;</pre>	/**< Compressed sensor identifier.*/
<pre>bool m_isU;</pre>	/**< True if clusters of u-strips, otherwise false. */
<pre>float m_position;</pre>	/**< Absolute seed strip position in r- <u>phi</u> or z. */
<pre>double m_clsTime;</pre>	/**< Average waveform maximum time. */
<pre>double m_clsTimeSigma;</pre>	/**< Standard deviation of waveform maximum times.*/
<pre>float m_clsCharge;</pre>	/**< Deposited charge in electrons. */
<pre>float m_seedCharge;</pre>	/**< Cluster seed charge in electrons. */
<pre>unsigned short m clsSize;</pre>	/**< Cluster size in pixels */

Data objects (cont'd)

VXDTrueHit: Record	of a particle passage through a sensor
<pre>int m_sensorID;</pre>	/**< ID of the sensor */
<pre>float m_u;</pre>	/**< Local u coordinate when crossing detector plane*/
<pre>float m_v;</pre>	/**< Local v coordinate when crossing detector plane*/
<pre>float m_entryU;</pre>	/**< Local u coordinate when entering silicon */
<pre>float m_entryV;</pre>	/**< Local v coordinate when entering silicon */
<pre>float m_exitU;</pre>	/**< Local u coordinate when exiting silicon*/
<pre>float m_exitV;</pre>	/**< Local v coordinate when exiting silicon*/
<pre>float m_energyDep;</pre>	/**< Deposited energy while traversing sensor */
<pre>float m_globalTime;</pre>	/**< Global time. */
<pre>TVector3 m_momentum;</pre>	/**< momentum in local coordinates when crossing detector plane */
TVector3 m_entryMomentum;	/**< momentum in local coordinates when entering silicon */
TVector3 m_exitMomentum;	/**< momentum in local coordinates when exiting silicon */

VxdID: Unique sensor identifier for PXD and SVD
union {
/** Unique id */
unsigned id: Bits;
<pre>struct {</pre>
/** Segment id */
<pre>unsigned segment: SegmentBits;</pre>
/** Sensor id */
<pre>unsigned sensor: SensorBits;</pre>
/** Ladder id */
<pre>unsigned ladder: LadderBits;</pre>
/** Layer id */
<pre>unsigned layer: LayerBits;</pre>
} parts /**< Struct to contain all id components */;
} m_id; /**< Union to store the ID and all components in one go. *,
};

What is missing

PXD and SVD

- 1. Lorentz shift reconstruction (based on local magnetic fields and cluster shapes) now only very simple versions we have biases in hit positions. Will improve for the testbeam.
- 2. Treatment of long clusters not a priority.

SVD

- 1. Hit time reconstruction underway for the testbeam, now only maxima of waveforms.
- 2. Performance optimization:
 - a. change order of processing cycles
 - b. 6 samples per SVDDigit and 1D clustering (only after the testbeam)

Thank you for attention.