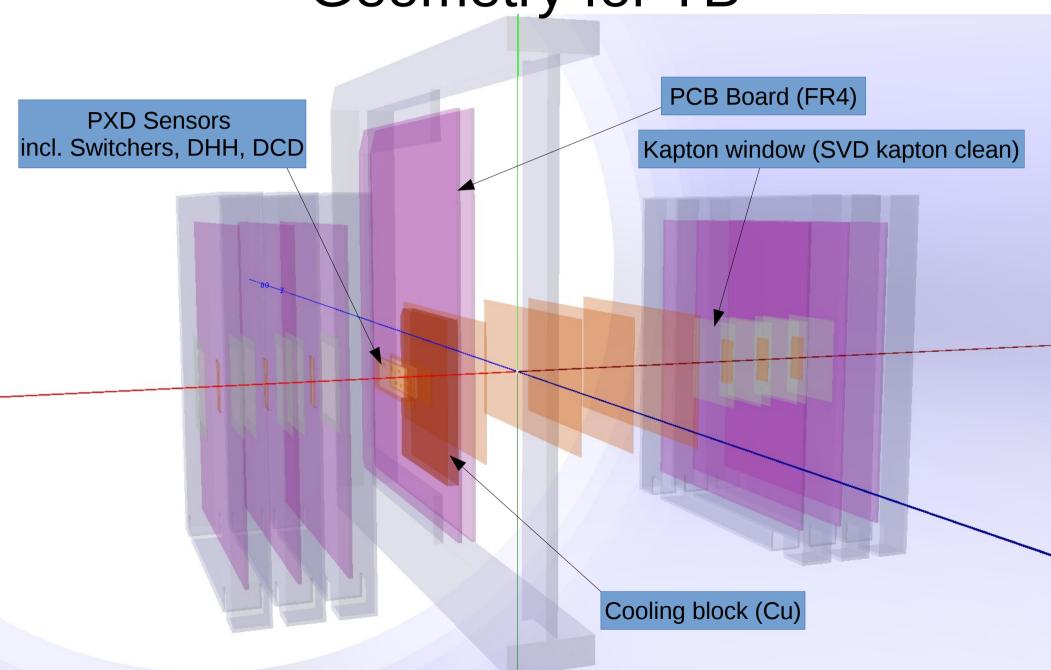
More Alignment ... Testbeam Preparations

Tadeáš Bilka Charles University Prague

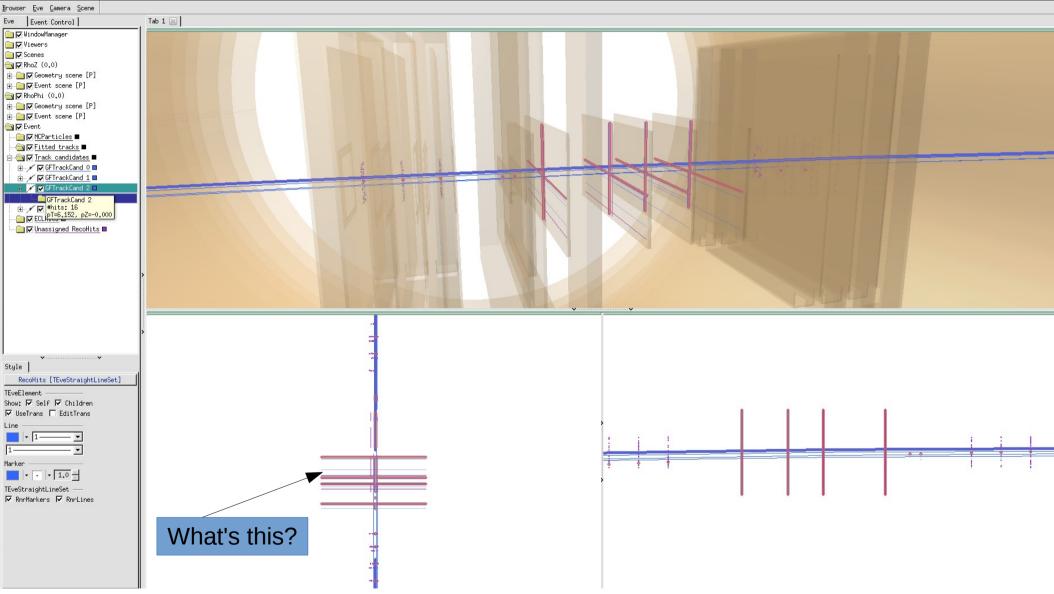
F2F Tracking Meeting Prague, Dec. 11. – 13. 2013


Outline

- Geometry for TB
- Beam Simulation in TB
- Telescope Integration
- General Broken Lines in GENFIT2
- Millepede II Alignment
- Conclusion & Discussion

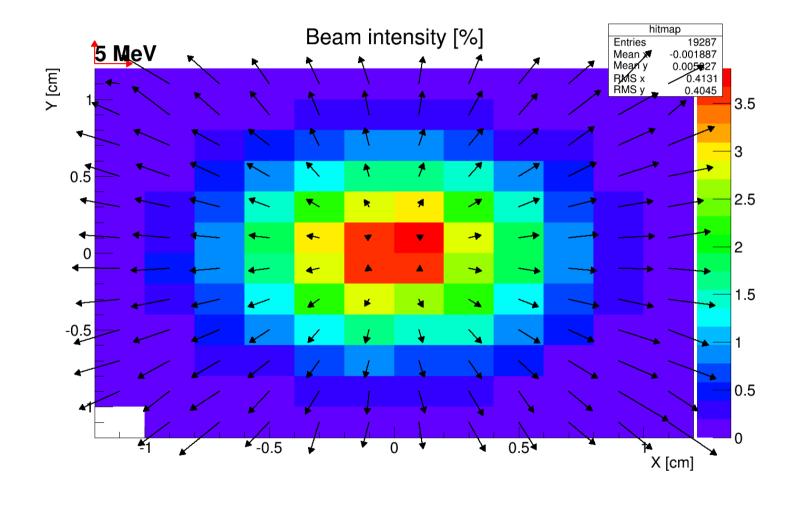
Geometry for TB

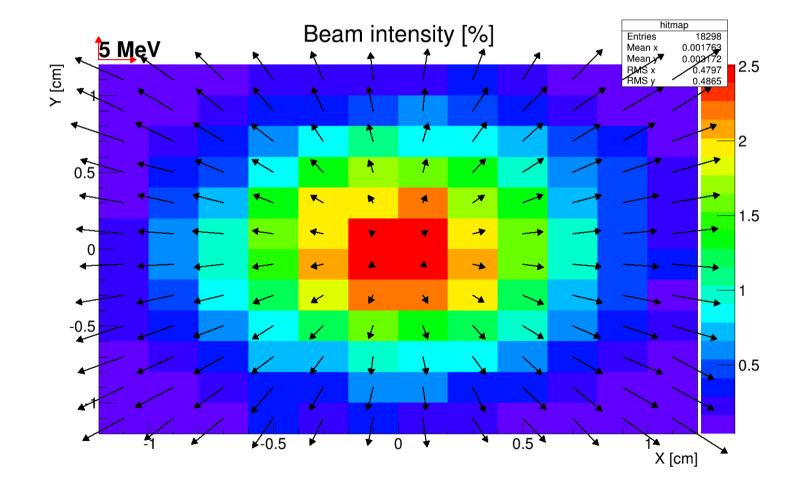
- New more detailed geometry in svn
 - Updated geometry creator to support boolean solids
 - VXD setup according to drawings from Carlos
 - Structures far from beam not exact (PCB Frame, no SVD support) ... still some dimensions/material unknown
 - "Baseline" setup = centered along beam axis
- Telescopes = 6 x PXD matrix: 1152 x 576 pixels, 2 x 1cm
 - FullTelescopeVXDTB.xml
 - Fullvxdtb.xml ... telescopes deactivated


Geometry for TB

Telescope Integration

- Idea: Use PXD sensors as replacement
 - Matrix 1152 x 576 pixels
- Change telescope PXD to binary readout
 - Add ChangePXDDigitsToBinary module into path before PXDClusterizer
- Adjust cluster cache size in PXDClusterizer
 - param('ClusterCacheSize', 576)
- Example script FullTelescopeVXDTB.py


Telescope Integration


- Based on Benjamin's study. Beam properties important for VXDTrackFinder
- Simulation of beam propagation in 15m of air from collimator to our setup
 - + Investigation of influence of Wiena setup
 - Geometry in BeamLine.xml
- Simple module BeamspotScan in svn
 - Analyze TrueHits of special "scanning" PXD sensor to get beam properties
 - Histogram average and RMS of momentum and slopes, average intensity in each bin
 - Output data for array of particle guns and for drawing of momentum vector field
 - To run it, use BeamScan.py

- Example script BeamSimulation.py to simulate recorded beam properties.
 Or real measured beam data (e.g. from Benjamin) can be loaded and simulated just create the data file.
- Creates a particle gun for each bin.
 - Loads beamscan.dat file (see it in svn)
 - Settings: number of bins in x/y, min x/y, max x/y (but x=z in TB)
 - Each bin (one line): $(\rho, p, \sigma_p, \phi, \sigma_{\phi}, \theta, \sigma_{\theta})$
 - Intensity controlled by nTracks param
 - Uniform vertex generation in each bin
 - Normal momentum and angle generation
- Example ROOT macro drawField.C to draw vector field
 - please read comments and adjust scale and legend arrow if arrows too big/small

Average Z/Y momentum after 15m air

Average Z/Y momentum after 5m air + 6 x 320um Si + 10m air

General Broken Lines in GENFIT2

- Currently GBL inside GENFIT2, but to use it in basf2, you must change the Genfitter module
 - Simplified interface to GBL in place ... but this works only for TrueHits
 - You have to call GBL from GenfitterModule.cc

```
454 🔻
              if (fitSuccess) {
455
                                    Chi2 of the fit: " << kfs->getChi2());
                B2DEBUG(99,
                //B2DEBUG(99."
                                   Forward Chi2: "<<gfTrack.getForwardChi2());
456
                B2DEBUG(99, "
                                    NDF of the fit: " << kfs->getBackwardNdf());
458
                //calculate probability
                double pValue = gfTrack.getFitStatus()->getPVal();
459
460
                                    pvalue of the fit: " << pvalue);
461
                // Everything succeeded: start GBL
462
             m_gbl.processTrack(&gfTrack);
```

- Also update GenfitterModule.h

```
#Include <genfit/DAF.h>
17 #include <genfit/GFGbl.h>

104 std::string m_resolveWireHitAmbi; /**< Determines
105 std::vector<double> m_beamSpot; /**< The coordin
106 genfit::GFGbl m_gbl;
```

General Broken Lines in GENFIT2

- Update of the GBL interface to work with clusters prepared
- But since Friday, I still haven't finished all debugging
- I discovered a change in behavior of construction of track candidates
 - Before: SVD U and V clusters were 2 TrackPoints each with 1 raw 1D measurement
 - Now: SVD U and V clusters are on the same TrackPoint as 2 raw 1D mesurements

General Broken Lines in GENFIT2

- Old interface cannot take into account material outside sensors
- With dead material, fitting results not optimal (bad scatterig error estimation)
- My new interface (scattering point at each material boundary) not yet updated to work with clusters and to produce alignment data
- First alignment tests with old interface using clusters ongoing...

Millepede II Alignment

- First tests with clusters not too much succesfull
 - Millepede complains about bad quality of tracks (too many rejections)
 - Sometimes Millepede crashes on input data
 - Sometimes matrix of alignment parameters not with full rank (seems data for some alignment params missing)
 - I still don't have missalignment. Now testing only ideal alignment. If alignment finishes, with clusters, there is some shift in ideal geometry (?!) ... but with some complaints from Millepede
- BUT: I used to have similar problems before and after some days of debugging I got rid of them. So there is a chance I can solve this:-)

Discussion

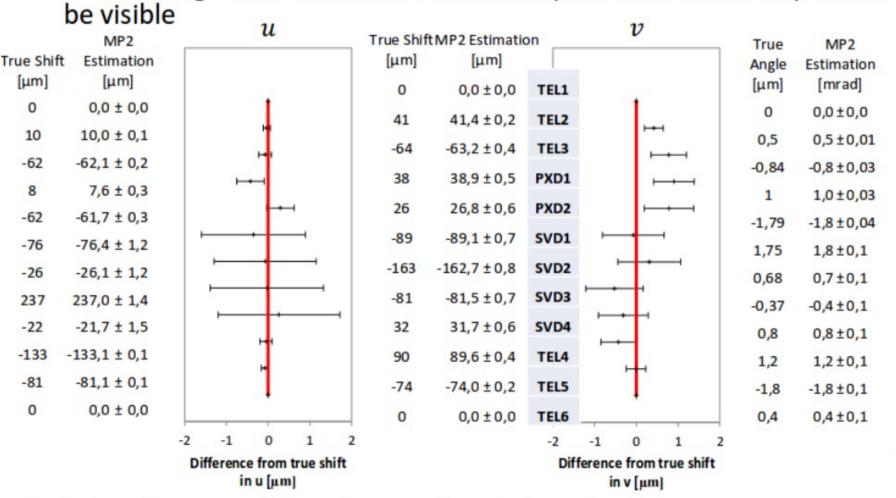
- Telescope integration
 - Do we want VXDTrackFinder for telescopes? Is it possible?
 - Are we going to rerun track finding offline with telescope data?
- Running GBL in basf2
 - A module for GBL fitting is prefered over current workaround.
 - What parameters for the module? GBL settings (outlier rejection settings), ? Additional GBL iteration, ? More material treatment strategies (e.g. attach air to next scatterer)
 - Store GBL track data / fit status in DataStore or just output data for alignment and some histograms?
- Running MP2 in basf2
 - Where should we check quality of tracks for alignment and using what criteria?
 - Should I write a module which will wrap MP2 alignment?
 - What settings should be available? Or just link the steering file?
 - What about the alignment chain? GBL fit → track selection → MP2 → Store alignment → Update RecoHits
 → Refit
 - I can write a module which will take MP2 results and tranform it into XML + Update recohits using VXDAlignmentManager
 - But we should somehow attach alignment data to each run (or maybe period of time) ... database?

Conclusion

- We might be able to align VXD almost "online" using Millepede in basf2…
- But still some things have to be understood, some issues solved and quite some code written (but not too much :-)...

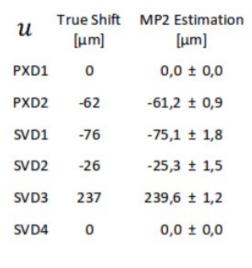
Thank you for your attention!

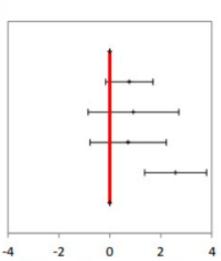
Backup

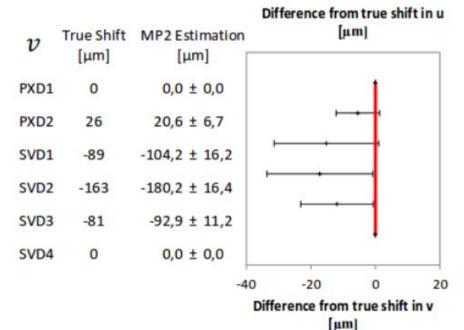

Geometry Questions

- If you are not here but know an answer, please mail to tadeas.bilka@gmail.com
 - What is the thickness of Cu coating on the PCB board?
 - What are the materials PCMAG layers are made of?
 - What are the dimensions (thickness) of EUDET sensor box and PCB board?
 - Can someone provide drawing of an SVD sensor?
 - How can I control the color in ROOT viewers?

Alignment / Misalignment Simulation


- How precisely misalignment can be reconstructed?
- B = const = 1T
- 15k tracks of primary electrons @ 6GeV/c
- True misalignment subtracted from Millepede estimation on plots for errors to




-0.2Difference from true angle [mrad]

Deviations from true shifts < 1 um, angles < 0.1 mrad

Alignment / Misalignment Simulation

- B = const = 1T
- 15199 Tracks

- 6 GeV/c, beamspot 2x2mm uniform
- Setup moved by 20 cm closer to gun
- Additional scatterer to have total 0.5 X0
- Without Telescopes

γ	True Angle [µm]	MP2 Estimation [μm]					
PXD1	0	0.0 ± 0.0					
PXD2	-1,79	-2,0 ± 0,3		+	1		
SVD1	1,75	2,1 ± 1,0		_	•	4	
SVD2	0,68	0,9 ± 1,2		_	•	٠.	
SVD3	-0,37	-0,3 ± 1,5					
SVD4	0,8	1,5 ± 1,7	L				
		-	2	()	2	4
				Difference from true angle [mrad]			