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Central drift chamber

Figure: Drift chamber
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Typical event xy projection

Figure: Typical BB̄ event
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Typical event xy projection - close up

Figure: Typical BB̄ event - every circle marks a hit
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Geometry of stereo layers

Figure: Axial layer

Figure: Stereo layer for z position resolution
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Central drift chamber - CDC

Structure

> 14336 sensitiv wires
> layerwise, hexagonal neighborhoods
> 56 layers in 9 superlayers
> superlayers alternating axial - stereo - axial - ...

Input of tracking / variables of the hits

> Projected xy wire positions
> Skewness of wires (axial - stereo)
> Drift time / drift circle radii according to known

drift velocity function
> (Energy deposition)

Close up
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Finding tracks - problem statement

Goals

> Group measurements / hits by the particle that caused them.
> Sort hits in the order of occurance.
> Provide initial parameters for track fit.

Non-goal

> Accurate track fitting→ Kalmanfilter of Genfit
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Turn this . . .
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. . . into that
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Conditions and requirements

Conditions

> Tracks are helices locally
> Distorted by multiple scattering
> Particles might curl inside the CDC
> Mind delay times (TOF and in wire propagation time)
> Much increased beam background over Belle

Requirements

> Introduce as little direction orientation as possible
> Provide intial values for track fit
> Maximize efficiency (find all tracks)
> Maximize purity (introduce only few fake tracks)
> Be fast
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General approaches

Global — top – down

> Recognize hits supporting a
trajectory with few parameters

> Assign the hits to that global
form

Local — bottom – up

> Combine neighboring hits
> Continuously increase group

size
> Judge continuations by quick

extrapolations

Advantage

Fast and simple to implement

Disadvantage

Neglects scattering and secondary
decays

Advantage

Detailed modeling of tracks

Disadvantage

Many tunable parameters to be
optimized
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General approaches

Global — top – down

> Recognize hits supporting a
trajectory with few parameters

> Assign the hits to that global
form

Local — bottom – up

> Combine neighboring hits
> Continuously increase group

size
> Judge continuations by quick

extrapolations

Methods
Hough / Legendre transformation

Methods
Networks / Cellular automata + fast
fits
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Local approach - generic building blocks

Positions of particle

Combine closeby hits to form a possible position of the particle

Transitions
Find neighboring positions such that particle could have transitioned from one
to the another

Positions and transitions

> Encode possible movements of particles
> Should closely resemble the physical movement
> → Paths in the graph represent tracks
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Local approach - generic building blocks

Positions of particle - Vertices / Cells

Combine closeby hits to form a possible position of the particle

Transitions - Edges / Neighbors

Find neighboring positions such that particle could have transitioned from one
to the another

Positions and transitions - Graph

> Encode possible movements of particles
> Should closely resemble the physical movement
> → Paths in the graph represent tracks

Detector Tracking finding - problem statement Local approach Generic algorithms Concrete Realization Fast fitting Further work



Design decisions

Graph properties

> Directional or adirectional?
> Loop free?

> Symmetric or asymmetric?
> Weighted vertices and/or edges?

Graph vertices

> How do vertices relate to hits?

Graph edges

> How can we find neighboring vertices?
> Can we exploit geometrical constraints?
> Which extrapolation methods can refine our judgement?

Path / track extraction
Which algorithms generate tracks from the graph best?
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Algorithms to extract paths from graphs

Brute force

> Complete backtracking

Networks and simplifications

> Hopfield-Network
> Denby-Peterson-Network
> ?
> Cellular automaton

Figure: Scheme of Hopfield-Network
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Hopfield network

Characteristics

> Mimics a network of neurons
> Model for assoziative memory

Other applications

> Traveling sales man problem
> Ising spin model (actually equivalent)
> PXD/SVD tracking (Jakob)

Benefits

> No backtracking
> Desired global patter emerges from the local connections by itself
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Hopfield-Networks

Input graph

> Cells in inactive state (si = 0)
> Weighted adirectional edges wij among cells
> wij > 0 for support / wij < 0 for mutual exclusion of cells
> Weight θi for each cell encoding an external excitation

Process

1. Update si according the sign of a weighted sum of excitations

2. Repeat until activity states si are stationary.

Variations

> Mean field approxiamtion ( sign→ sigmoid function)
> Simultanious update / asynchronous update
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Hopfield-Network - schematic

Figure: Scheme of Hopfield network

Update rule

si =

{
1 if

∑
j wij · sj + θi > 0

0 if
∑

j wij · sj + θi < 0

Minimized energy function

E = −1
2

∑
i,j

wij · si · sj −
∑

i

θi · si

(compare Ising spin model)
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Hopfield network - properties

Final output

> Stationary activity state si = 1 indicates cell belongs to sought track

Efinal = −
1
2

∑
si ,sj=1

wij −
∑
si=1

θi

Denby-Peterson-Network

> Concrete realization using two hits to form a straight line cell
> Edge weights set in terms of angular deviation

wij =
cosm αij

li · lj

Difficulty

Too slow to converge for tracking application



Cellular automaton - 1

Introduced at DESY
Discrete form of Hopfield-Network in CATS (Cellular Automaton for tracking in
Silicon) by Kisel for HERA-B

Simplifications over Denby-Peterson-Network

> Make edges directed in forward particle movement
> −→ directed loop free graph or feed forward network
> Uniform edge weights wij = 1 for allowed edges
> No external excitation θi = 0
> Change update scheme
> Cells carry energy state Ei (not activation state si )

Process

> Update the energy state to highest neighbor energy plus 1
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Cellular automaton - schematic

Figure: Cellular automaton in
final state

Update rule

Ei = max
neighbor j

(Ej + wij) = max
neighbor j

Ej + 1

Output

> Cells update only once
> Highst cell marks end of track

Maximzed energy function

(negative of Hopfield-Network)

Ei,final =
∑

max. path to i

wij = #Cells in path− 1
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Cellular automaton - 2

Output

> Energy state indicates number of cells in the longest path from this cell
> Create path / track by following the highest states
> Always figures out the longest path without backtracking

Short comings

Weighting scheme quite unnecessary rigid
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Algorithms to extract paths from graphs

Brute force

> Complete backtracking

Networks and simplifications

> Hopfield-Network
> Denby-Peterson-Network
> ?
> Cellular automaton

Figure: Cellular automaton in final state
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Algorithms to extract paths from graphs

Brute force

> Complete backtracking

Networks and simplifications

> Hopfield-Network
> Denby-Peterson-Network
> Weighted cellular automaton
> Cellular automaton

Figure: Cellular automaton in final state
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Weighted cellular automaton

Allow weights in graph

> Arbitrary edge weights wij refines connection quality
> Arbitrary vertex weight θi measures quality of cell (useful for complex

combound cells)

Update rule

Ei = max
neighbor j

(Ej + wij) + θi

Maximized energy function

Ei,final =
∑

best path to i

wij +
∑

best path i

θi

same as Hopfield network!
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Weighted cellular automaton - summary

Advantages

> Fast - assignment time only linear in hits O(n)
> Weights allow detailed modeling
> Resembles the Hopfield-Network closely

Small obstacle

> Must enforce loop free condition on the graph
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Bottom-up - A two stage process

Combine hits to segments limited by the superlayer bounds

Combine segments to tracks
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Typical event xy projection

Figure: Typical BB̄ event
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Preparation

Clustering

> Many seperate groups = many
smaller graphs

> Generate by expanding minimal
hexagonal neighborhood of
wires.

> Analyze each cluster (in
parallel?)

Figure: Nearest six neighbors of a sense
wire
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Clusters of the typical event

Figure: Typical BB̄ event
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In each cluster - What is a suitable cell?

Vertex / Cell property

Reflect the xy position of the particle

Edges / Neighbor property

Reflect the possible transition from one position to another

Single hits are not the answer

> Position too ambiguous
> No direction of flight information
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Static cell neighborhood for hits

Figure: Static cell neighborhood
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Static cell neighborhood for hits

Figure: Static cell neighborhood - cannot follow bend particle trajectories
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Introduction of facets

Figure: Idea: Use three hits to triangulate the position of the particle

Detector Tracking finding - problem statement Local approach Generic algorithms Concrete Realization Fast fitting Further work



Types of facets - Ortho

Figure: Naming lend from Benzol derivate Xylol
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Types of facets - Meta

Figure: Naming lend from Benzol derivate Xylol
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Types of facets - Para

Figure: Naming lend from Benzol derivate Xylol
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Facets as cells

Properties of facets

> Ordered triple of neighboring hits
> Each hit has a right-left-passage information assigned to disambiguate

trajectory
> Linear trajectory by least square fit
> Residual curvature over trajectory line

Neighbors of facet

> Neighboring facet have to common hits
> Weight refinement possible in

> Flight direction
> Loss cut on the curling direction
> ( Maybe even favouring energy loss in the forward direction )

Detector Tracking finding - problem statement Local approach Generic algorithms Concrete Realization Fast fitting Further work



First stage overview

From hits to segments

1. Translate the raw data and combined it with the detector geometry.

2. Group the hits into clusters.
3. For each cluster:

3.1 Build triples of wire hits, called facets, as cells to be given to the cellular
automaton.

3.2 Construct the weighted graph edges by searching connections of each
facet.

3.3 Retrieve the paths from the cellular automaton in a multi-pass manner.
3.4 Reduce the paths of facets to segments.
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Typical event after the first stage

Figure: Typical BB̄ event
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Bottom-up - A two stage process

Combine hits to segments limited by the superlayer bounds

Combine segments to tracks
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What is a suitable cell?

Vertex / Cell property

Reflect the 3D position of the particle

Edges / Neighbor property

Reflect the possible transition from one position to another (requires
extrapolation across superlayer bounds)

Its not single segments

> No z information
> Only available by comparing axial with stereo segments
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Introduction of segment triples
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Segment triples of cells

Properties of segment triples

> Ordered triple of segments in arrangment axial - stereo - axial
> Riemann circle fit to the two axial segments
> Reconstructed z information of the stereo segment
> Linear z over travel distance fit

Neighbors of segment triples

> Neighboring segment triples have one axial segment in common
> Weight refinement possible in

> extrapolated xy position
> extrapolated z displacement
> momentum.
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Second stage overview

From segments to tracks

1. Build triples of segments as cells to be given to the cellular automaton.

2. Construct the graph edges by searching neighbors of each segment
triple.

3. Retrieve the paths from the cellular automaton in a multi-pass manner.

4. Reduce the paths of segment triples to three dimensional tracks.

5. Decide, whether the tracks should interpreted as reversed.

6. Export to track candidates, which can be fitted by Genfit algorithm.
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Fast track fitting and extrapolation

Iterative methods

> Non-linear optimization
> Newton algorithm ...
> Kalman filter

properties

> slower (many steps)
> accurate
> unbiased
> needs initial parameters

Noniterative methods

> Least square fitting
> + Transformation to appropriate

space

properties

> faster
> approximate
> may be biased
> yields initial parameters
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Conformal projection

Formula

X =
x

x2 + y2

Y =
x

x2 + y2

Properties

> Maps generalized circles to generalized circles
> Maps circles through the origin to lines
> → Only suitable for tracks coming from the origin
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The conformal map revealed

Normal space Conformal space
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Conformal projection - distortion

Distortion

D ≈ d
r2

Fix
Reweighting with

w =
1
r4
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Big Brother - Stereographic projection

Formula

U =
x

r2 + 1

V =
y

r2 + 1

W =
r2

r2 + 1

Properties

> Maps the 2D plane to a 3D unit sphere surface.
> Maps generalized circles to circles on this sphere.
> → All points of circle are in one plane after the projection.
> Suitable for all kinds of tracks
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The stereographic projection revealed
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Stereographic projection - distortion

Distortion

D ≈ d
(r + 1)2

Fix
Reweighting with

w =
1

(r + 1)4
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Even simpler - parabolic projection

Formula

U = x

V = y

W = r2

Properties

> Maps the 2D plane to a 3D parabolic surface
> Still maps circles and lines into plane in the 3D world
> Suitable for all kind of tracks
> Easily constrainable
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The parabolic projection revealed
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Parabolic projection - distortion

No distortion (in first order)

D ≈ d +O
(

d2

circle radius

)

Detector Tracking finding - problem statement Local approach Generic algorithms Concrete Realization Fast fitting Further work



Properties of fit

> Distances from plane = distance to fit circle in 2D in 1st order 1
R

> Accurate, since big circles and small distances are expected.
> Use a least square fit to minimze

S =
∑

i

(n0 + U · n1 + V · n2 + W · n3)
2

> Computable by single matrix inversions or SVD decomposition
> Fast
> Enables extrapolation
> Easily constrainable to tracks from interaction point
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Are you left or right ?

Orientation matters

> One can enhance the fit with the drift circle radii ρ

S =
∑

i

(di ± ρi)
2 =

∑
i

(n0 + xi · n1 + yi · n2 + r2
i · n3 ± ρi)

2

> Use plus or minus, if you want the point left or right of the circle.
> Right left information from the tangents used to build the segment
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Further work

Evaluation

> Compare found tracks and segments to Monte Carlo information
> Optimize the weights in the two stages.
> Check the unbiasedness of fitting procedure (I suspected a numerical

instability biasing to low curvature)

Profiling

> Improve the time performance of each step.

Detector Tracking finding - problem statement Local approach Generic algorithms Concrete Realization Fast fitting Further work
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What is the benchmark for tracking?

> What are reconstructable particles?
> What hit contents does the ideal track have?
> What momentum and vertex should be reconstructed most accurate?
> Are we convering secondary particles correctly?

MCTrackFinder
Make sure it yields our definition of ideal!
(If there is more than one kind of ideal, make all available!)

Reference Comparing to the reference
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Additions to MCTrackFinder

> Default: Inclusion of secondary particles with enough hits.
> Optional: Momentum at first measurement.
> Optional: Selection of a tag side.
> ...

Reference Comparing to the reference
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Matching to the reference

Matching challenge

Assume a 1↔ 1 relation from
#n Monte Carlo tracks

↔

#m Pattern recognition tracks

Matching by hit content

Choose best items of the confusion matrix.

Reference Comparing to the reference



Confusion matrix
MC tracks Background

. . . . . . . . . . . .
PR . . . Hit / NDF . . . . . .

tracks . . . content . . . . . .
. . . . . . . . . . . .

Unassigned . . . . . . . . . . . .

Row-wise matching - purity matching

> Search highest purity Monte Carlo track for each pattern recognition track.
> Look for highest entry in each row.
> Relation hp: 1↔ n

Column-wise matching - efficiency matching

> Search highest efficiency pattern recognition track for each Monte Carlo
track.

> Look for highest entry in each column.
> Relation he: 1↔ m
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Two sided matching

Two sided matching - concatination of the former

> Highest purity and highest efficiency relation agree!
> The highest purity Monte Carlo track mc2 of the highest efficiency pattern

recognition track of Monte Carlo track mc1 is the same as the Monte Carlo
track mc1.

mc2 := hp(he(mc1)) = mc1

> Or equivalent: The highest efficiency pattern recognition track pr2 of the
highest purity Monte Carlo track of pattern recognition track pr1 is the
same as the pattern recognition track pr1.

pr2 := he(hp(pr1)) = pr1

> Relation: 1↔ 1

Reference Comparing to the reference



Classification

Classification of pattern recognition tracks pri

Ghost Highest purity is smaller than acceptable contamination
threshold 0.66.

Background he(mci)) = background column

Clone hp(he(mci)) 6= mci

Matched hp(he(mci)) == mci

Classification of Monte Carlo tracks mci / MCParticles

Missing he(mci)) = bad purity pattern recognition track / unassigned
column

Merged hp(he(mci)) 6= mci

Matched hp(he(mci)) == mci
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New module : MCTrackMatcherModule

Input

1. Ideal Monte Carlo tracks

2. Pattern recognition tracks

Output for subsequent evalutation

1. Highest purity relation (negative for clone PR tracks)

2. Highest efficiency relation (negative for merged MC tracks)

3. Pattern recognition tracks to MCParticle relation

4. The McTrackId property of the pattern recognition tracks

Options

1. Usage of detectors

2. Switch for ghost assignement to MCParticles

Reference Comparing to the reference



Short term goal - Common combinatorial
evaluation

> Ghost rate
> Tracked background rate
> Clone rate
> Missing rate
> Merged rate
> Matched rate

by
> Multiplizity
> pt

> PDG code

in
> Gun events with muons, pions,... ,
> specific decay B → Kπππ and
> generic events

Reference Comparing to the reference
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