Non-Geometric Flux Compactifications

Daniela Herschmann

Ludwigs-Maximilians-Universität München

Max-Planck-Institut für Physik

Dimensional Oxidation of Non-Geometric Fluxes in Type II Orientifolds

Ralph Blumenhagen, Xin Gao, D.H., Pramod Shukla

arXiv:1306.2761 [hep-th]

JHEP 10 (2013) 201

Dimensional Oxidation of Non-Geometric Fluxes in Type II Orientifolds Ralph Blumenhagen, Xin Gao, D.H., Pramod Shukla

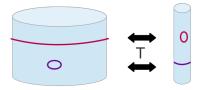
Contents

T-Duality

- 2 Non-Geometric Fluxes
- 3 4D Theory with Non-Geometric Fluxes
- 4 10D Theory with Non-Geometric Fluxes

5 Conclusions

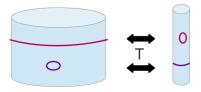
String Theory


extended objects in 10D spacetime

 \rightarrow compactify 6 dimensions

String Theory

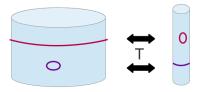
extended objects in 10D spacetime


 \rightarrow compactify 6 dimensions

String Theory

extended objects in 10D spacetime

 \rightarrow compactify 6 dimensions



strings can wind around extra dimensions

String Theory

extended objects in 10D spacetime

 \rightarrow compactify 6 dimensions

strings can wind around extra dimensions

T-Duality

T-Duality between type IIA and IIB string theory

IIA compactified with radius R

‡ T

IIB compactified with radius $\sim rac{1}{R}$

same particle content

same physics

T-Duality between type IIA and IIB string theory

IIA compactified with radius R	e.g. type II compactified on a circle	
↓ T	type IIA	type IIB
IIB compactified with radius $\sim rac{1}{R}$		
	$\mathcal{C}_*, \mathcal{C}_\mu \qquad \leftrightarrow$	
same particle content	$C_{*\mu u}, C_{\mu u ho}$ \leftrightarrow	$\leftarrow C_{\mu\nu}, C_{*\mu\nu\rho}$
same physics	$G_{*\mu}, B_{*\mu} \leftrightarrow$	$B_{*\mu}, G_{*\mu}$

T-Duality between type IIA and IIB string theory

IIA compactified with radius R	e.g. type II compactified on a circle	
↓ T	type IIA	type IIB
IIB compactified with radius $\sim rac{1}{R}$		
	$C_*, C_\mu \qquad \leftarrow$	
same particle content	$C_{*\mu u}, C_{\mu u ho}$ \leftarrow	$\rightarrow C_{\mu\nu}, C_{*\mu\nu\rho}$
same physics	$G_{*\mu}, B_{*\mu}$ \leftarrow	$\rightarrow B_{*\mu}, G_{*\mu}$

T-Duality between type IIA and IIB string theory

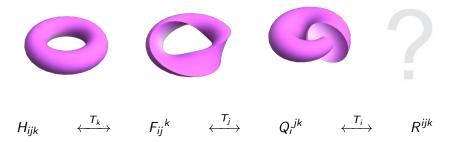
IIA compactified with radius R	e.g. type II compactified on a circle	
↓ T	type IIA	type IIB
IIB compactified with radius $\sim rac{1}{R}$		
	C_*, C_μ	$\leftrightarrow C_0, C_{*\mu}$
same particle content	$C_{*\mu u}, C_{\mu u ho}$	$\leftrightarrow C_{\mu\nu}, C_{*\mu\nu\rho}$
same physics	$G_{*\mu}, B_{*\mu}$	$\leftrightarrow \qquad B_{*\mu}, G_{*\mu}$

NSNS-flux $H \sim dB$

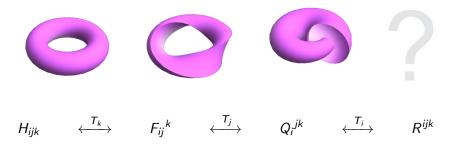
T-Duality mixes G and $B \Rightarrow$ change of geometry

H_{ijk}

T-Duality mixes G and $B \Rightarrow$ change of geometry

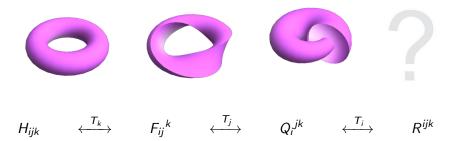

 $\xrightarrow{T_k}$ F_{ij}^{k} H_{ijk}

T-Duality mixes G and $B \Rightarrow$ change of geometry



$H_{ijk} \longrightarrow F_{ij}{}^k \longrightarrow Q_i{}^{jk}$

T-Duality mixes G and $B \Rightarrow$ change of geometry



T-Duality mixes G and $B \Rightarrow$ change of geometry

T-Duality between IIA and IIB requires the presence of all of these fluxes

T-Duality mixes G and $B \Rightarrow$ change of geometry

T-Duality between IIA and IIB requires the presence of *all* of these fluxes

not clear if this is allowed

G and B cannot describe Q and R flux

4D Theory with Non-Geometric Fluxes

add non-geometric fluxes to the superpotential:

[Shelton, Taylor, Wecht]

$$W \sim \int \Omega \wedge \left(S H + F \cdot J + Q \cdot J \wedge J + R \cdot J \wedge J \wedge J \right)$$

moduli: scalar fields which arise through extra dimensions

The superpotential generates a scalar potential via

$$V_F = e^{K} \left(G^{i\bar{j}} D_i W D_{\bar{j}} \overline{W} - 3|W|^2 \right)$$

potential in 4D

Phenomenology

Moduli Stabilization

moduli fields - not (yet) observed

 \Rightarrow heavy

 \rightarrow full stabilization only with non-geometric fluxes

Phenomenology

Moduli Stabilization

moduli fields - not (yet) observed \Rightarrow heavy

 \rightarrow full stabilization only with non-geometric fluxes

Supersymmetry Breaking

string theory is supersymmetric - the observed world is not

 \rightarrow symmetry breaking

Phenomenology

Moduli Stabilization

moduli fields - not (yet) observed \Rightarrow heavy

 \rightarrow full stabilization only with non-geometric fluxes

Supersymmetry Breaking

string theory is supersymmetric - the observed world is not

 \rightarrow symmetry breaking

Vacuum Energy

slightly positive vacuum energy observed

 \rightarrow only with non-geometric fluxes

10D Theory with Non-Geometric Fluxes Only *H*-flux:

$$V_F = V_{action}$$

with V_{action} from dimensional reduction of 10D effective string action

10D Theory with Non-Geometric Fluxes Only *H*-flux:

$$V_F = V_{action}$$

with V_{action} from dimensional reduction of 10D effective string action

what is the 10D theory associated with non-geometric fluxes?

dimensional reduction: $10D \rightarrow 4D$ dimensional oxidation: $10D \leftarrow 4D$

10D Theory with Non-Geometric Fluxes Only *H*-flux:

$$V_F = V_{action}$$

with V_{action} from dimensional reduction of 10D effective string action

what is the 10D theory associated with non-geometric fluxes?

dimensional reduction: $10D \rightarrow 4D$ dimensional oxidation: $10D \leftarrow 4D$

Procedure: for simplicity: toroidal orientifold with only 7 moduli all fluxes constant

- i) compute scalar potential V_F from W
- ii) oxidize action which reduces to V_F

10D Theory with Non-Geometric Fluxes - NSNS sector Result

$$S = \frac{1}{2} \int d^{10}x \, e^{-2\phi} \sqrt{-g} \, \mathcal{F}_{IJK} \mathcal{F}_{I'J'K'} \left(\frac{1}{4} \mathcal{H}^{II'} \eta^{JJ'} \eta^{KK'} - \frac{1}{12} \mathcal{H}^{II'} \mathcal{H}^{JJ'} \mathcal{H}^{KK'} \right)$$

is the action which reduces to V_F !

with

$$\mathcal{H}_{IJ} = \begin{pmatrix} G^{ij} & -G^{ik}B_{kj} \\ B_{ik}G^{kj} & G_{ij} - B_{ik}G^{kl}B_{lj} \end{pmatrix} \qquad \qquad \eta_{IJ} = \begin{pmatrix} 0 & \delta^{i}{}_{j} \\ \delta^{j}_{i} & 0 \end{pmatrix}$$

and

$$\mathcal{F}_{ijk} = H_{ijk} \,, \quad \mathcal{F}^{i}{}_{jk} = \mathcal{F}^{i}{}_{jk} \,, \quad \mathcal{F}_{k}{}^{ij} = \mathcal{Q}_{k}{}^{ij} \,, \quad \mathcal{F}^{ijk} = \mathcal{R}^{ijk}$$

more degrees of freedom than G and B needed to describe all fluxes

more degrees of freedom than G and B needed to describe all fluxes

Double Field Theory

- \bullet winding coordinates \rightarrow doubled degrees of freedom
- describes T-Duality and non-geometric fluxes

more degrees of freedom than G and B needed to describe all fluxes

Double Field Theory

- \bullet winding coordinates \rightarrow doubled degrees of freedom
- describes T-Duality and non-geometric fluxes
- \Rightarrow oxidized action of the same form in both NSNS- and RR-sector

more degrees of freedom than G and B needed to describe all fluxes

Double Field Theory

- \bullet winding coordinates \rightarrow doubled degrees of freedom
- describes T-Duality and non-geometric fluxes
- \Rightarrow oxidized action of the same form in both NSNS- and RR-sector

BUT

doubled theory not physical \rightarrow constraints \rightarrow kill half of the fluxes

 \rightarrow is it really possible to assume background values for all of these fluxes?

Summary

- dimensional oxidation to 10D (for toroidal type II orientifolds)
- similar to Double Field Theory action

Summary

- dimensional oxidation to 10D (for toroidal type II orientifolds)
- similar to Double Field Theory action

Summary

- dimensional oxidation to 10D (for toroidal type II orientifolds)
- similar to Double Field Theory action

Future directions

• which fluxes simultaneously?

Summary

- dimensional oxidation to 10D (for toroidal type II orientifolds)
- similar to Double Field Theory action

- which fluxes simultaneously?
- further studies of deSitter vacua and non-geometric model building

Summary

- dimensional oxidation to 10D (for toroidal type II orientifolds)
- similar to Double Field Theory action

- which fluxes simultaneously?
- further studies of deSitter vacua and non-geometric model building
- generalization of oxidation procedure to Calabi Yau manifolds with non-geometric fluxes

Summary

- dimensional oxidation to 10D (for toroidal type II orientifolds)
- similar to Double Field Theory action

- which fluxes simultaneously?
- further studies of deSitter vacua and non-geometric model building
- generalization of oxidation procedure to Calabi Yau manifolds with non-geometric fluxes \rightarrow work in progress

Thank You !

10D Theory with Non-Geometric Fluxes - BackUp

The NSNS part of the oxidized action reads

$$S = \frac{1}{2} \int d^{10}x \sqrt{-g} \left(\mathcal{L}^{\mathrm{H}} + \mathcal{L}^{\mathrm{F}} + \mathcal{L}^{\mathrm{Q}} + \mathcal{L}^{\mathrm{R}} + \mathcal{L}^{\mathrm{HQ}} + \mathcal{L}^{\mathrm{FR}} \right)$$

the following orbits of fluxes appear in the action:

$$\begin{split} \mathfrak{H}_{ijk} &= \overline{H}_{ijk} + 3\,\overline{F}^{m}{}_{[\underline{i}\underline{j}} B_{\underline{m}\underline{k}]} + 3\,\overline{Q}_{[\underline{i}}{}^{mn}B_{\underline{m}\underline{j}} B_{\underline{n}\underline{k}]} + \overline{R}^{mnp}B_{\underline{m}[\underline{i}}B_{\underline{n}\underline{j}}B_{\underline{n}\underline{k}]} \\ \mathfrak{F}^{i}{}_{jk} &= \overline{F}^{i}{}_{jk} + 2\,\overline{Q}_{[\underline{i}}{}^{mi}B_{\underline{m}\underline{k}]} + \overline{R}^{mni}B_{\underline{m}[\underline{i}}B_{\underline{n}\underline{k}]} \\ \mathfrak{Q}_{k}{}^{ij} &= \overline{Q}_{k}{}^{ij} + \overline{R}^{mij}B_{\underline{m}k} \\ \mathfrak{R}^{ijk} &= \overline{R}^{ijk} \end{split}$$

10D Theory with Non-Geometric Fluxes - BackUp

The NSNS part of the oxidized action reads

$$S = \frac{1}{2} \int d^{10}x \sqrt{-g} \left(\mathcal{L}^{\mathrm{H}} + \mathcal{L}^{\mathrm{F}} + \mathcal{L}^{\mathrm{Q}} + \mathcal{L}^{\mathrm{R}} + \mathcal{L}^{\mathrm{HQ}} + \mathcal{L}^{\mathrm{FR}} \right)$$

with

$$\begin{split} \mathcal{L}^{\mathrm{H}} &= -\frac{e^{-2\phi}}{12} \mathfrak{H}_{ijk} \,\mathfrak{H}_{i'j'k'} \,g^{ii'}g^{jj'}g^{kk'} \,, \qquad \mathcal{L}^{\mathrm{HQ}} = \frac{e^{-2\phi}}{2} \mathfrak{H}_{mni} \,\mathfrak{Q}_{i'}{}^{mn}g^{ii'} \\ \mathcal{L}^{\mathrm{F}} &= -\frac{e^{-2\phi}}{4} \Big(2 \,\mathfrak{F}^{m}{}_{ni} \,\mathfrak{F}^{n}{}_{mi'}g^{ii'} + \mathfrak{F}^{i}{}_{jk} \,\mathfrak{F}^{i'}{}_{j'k'}g_{ii'}g^{jj'}g^{kk'} \Big) \\ \mathcal{L}^{\mathrm{Q}} &= -\frac{e^{-2\phi}}{4} \Big(2 \mathfrak{Q}_{m}{}^{ni} \,\mathfrak{Q}_{n}{}^{mi'}g_{ii'} + \mathfrak{Q}_{k}{}^{ij} \,\mathfrak{Q}_{k'}{}^{i'j'}g_{ii'}g_{jj'}g^{kk'} \Big) \\ \mathcal{L}^{\mathrm{R}} &= -\frac{e^{-2\phi}}{12} \mathfrak{R}^{ijk} \,\mathfrak{R}^{i'j'k'}g_{ii'}g_{jj'}g_{kk'} \,, \qquad \mathcal{L}^{\mathrm{RF}} = \frac{e^{-2\phi}}{2} \mathfrak{F}^{i}{}_{mn} \,\mathfrak{R}^{mni'}g_{ii'} \end{split}$$

10D Theory with Non-Geometric Fluxes - BackUp

The RR sector and the D-term:

$$S = rac{1}{2} \int d^{10}x \, \sqrt{-g} \, \mathcal{L}^{\mathrm{RR}} + S_D$$

 $\mathcal{L}^{\mathrm{RR}} = -rac{1}{2} \sum_{p=0,2,4,6} |G^{(p)}|^2$

$$V_{D6} = -\frac{1}{2} e^{\kappa} t_1 t_2 t_3 \left[s \tau_{135} - u_1 \tau_{146} - u_2 \tau_{236} - u_3 \tau_{245} \right]$$

with

$$\tau_{ijk} = \overline{H}_{ijk} \,\overline{G}^{(0)} + 3\,\overline{F}^{m}_{[\underline{i}\underline{j}}\overline{G}^{(2)}_{\underline{m}\underline{k}]} - \frac{3}{2}\overline{Q}_{[\underline{i}}{}^{mn}\overline{G}^{(4)}_{\underline{m}\underline{j}\underline{k}]} - \frac{1}{6}\overline{R}^{mnp}\overline{G}^{(6)}_{\underline{m}npijk}$$