High multiplicity NLO with NJet and Sherpa

Valery Yundin Max-Planck-Institut für Physik

in collaboration with S. Badger, B. Biedermann, A. Guffanti and P. Uwer

NLO Sherpa users meeting, 10 January 2014, MPP Munich

NLO results provide more accurate predictions and theoretical uncertainties for multi-jet backgrounds in new physics searches.

NLO vs LO

 Reduced theoretical uncertainty

NLO automation

- Great advances in the recent years
- High-multiplicity still remains a challenge

Features

NJet public C++ library Multi-parton matrix elements in massless QCD

[https://bitbucket.org/njet/njet]

[arXiv:1209.0100]

► Full colour-summed amplitudes for up to 5 outgoing partons

- Reliable accuracy estimate and rescue system
- BLHA interface for MC generators

New in NJet 2.0¹

- $W^{\pm}/Z/\gamma$ with up to **5 jets** and $\gamma\gamma$ with up to **4 jets**.
- Leading/Subleading colour splitting.
- Hardware vectorization for scaling test.
- BLHA2 support.

¹beta available from https://bitbucket.org/njet/njet/downloads

Inclusive Jet Multiplicity

NJet+Sherpa: total XS for 2, 3, 4, 5 jets at 7 TeV vs ATLAS measurements

2 / N

NJet+Sherpa: 5 jets at 7 TeV, scale variations

ATLAS cuts, NNPDF23 PDF set, $\alpha_s(M_Z) = 0.118$

$$\begin{split} &\sigma_5^{7\,\text{IeV-LO}}(\mu=\hat{H}_T/2)=0.699(0.004)^{+0.530}_{-0.280}\,\text{nb}\\ &\sigma_5^{7\,\text{TeV-NLO}}(\mu=\hat{H}_T/2)=0.544(0.016)^{+0.0}_{-0.177}\,\text{nb}\\ &\sigma_5^{8\,\text{TeV-LO}}(\mu=\hat{H}_T/2)=1.044(0.006)^{+0.70}_{-0.413}\,\text{nb}\\ &\sigma_5^{8\,\text{TeV-NLO}}(\mu=\hat{H}_T/2)=0.790(0.021)^{+0.0}_{-0.313}\,\text{nb} \end{split}$$

3/N

NJet+Sherpa: 5 jets at 7 TeV, p_T and η distributions

ATLAS cuts, NNPDF23 PDF set, $\alpha_s(M_Z) = 0.118$

NJet+Sherpa: 5 jets at 7 TeV, PDF uncertainties

ATLAS cuts, $\alpha_s(M_Z) = 0.118$, PDF uncertainty $\approx 3\%$

Right plot — distributions normalized to total cross-section.

0.18Cuts NNPDF2.3 **MSTW2008** anti-kt R = 0.4**CT10** $p_T^{1st} > 80 \text{ GeV}$ 0.14ABM11 $p_T^{\text{other}} > 60 \text{ GeV}$ ATLAS data $|\eta| < 2.8$ σ_{n+1}/σ_n 0.10 NLO $\mu_R = \mu_F = \hat{H}_T/2$ vars. $\hat{H}_T/4$ and \hat{H}_T 0.06 (shown for NNPDF) NJet + Sherpa $\alpha_s(M_Z) = 0.118$ $pp \rightarrow jets at 7 \text{ TeV}$ 0.02 2 3 4 6/N

n

NJet+Sherpa: jets ratios at 7 TeV with different PDFs vs ATLAS data

NJet+Sherpa: p_T for jets ratios at 7 TeV

7/N

NJet+Sherpa: $\gamma\gamma + 3j$ at 8 TeV, scale variations, CT10nlo PDF

NJet+Sherpa: $\gamma\gamma + 3j$ at 8 TeV, leading p_T cut dependence

 p_{T,j_1} cut dependence in leading jet p_T distribution.

NJet+Sherpa: $\gamma\gamma + 3j$ at 8 TeV, $m_{\gamma\gamma}$ distribution and PDF uncertainties

PDF uncertainty $\approx 3-6\%$ 10^{-2} LO NLO CT10 NLO NLO NNPDF23 $d\sigma/dm_{\gamma\gamma}$ [pb GeV $^{-2}$] NLO MSTW2008 $d\sigma/dm_{\gamma\gamma}$ [pb GeV $^{-2}$] NLO ABM11 10^{-3} 0^{-3} NJet + Sherpa 10^{-4} $pp \rightarrow \gamma \gamma + 3$ jet at 8 TeV NJet + Sherpa 10^{-4} $pp \rightarrow \gamma \gamma + 3$ jet at 8 TeV 1.06 1.6 1.04 1.02 1.41.00 1.20.98 1.00.96 0.8 0.940.6 0 100 200 300 400 500 100 200 300 400 0 $m_{\gamma\gamma}$ $m_{\gamma\gamma}$

Di-photon invariant mass distribution

NJet+Sherpa: p_T for $\gamma\gamma$ + jets 3/2 ratio at 8 TeV

Hard process ingredients

$$\sigma^{\text{NLO}} = \int_{n} \left(\boxed{d\sigma_{n}^{\text{B}}} + \boxed{d\sigma_{n}^{\text{V}}} + \int_{1} \boxed{d\sigma_{n+1}^{\text{S}}} \right) + \int_{n+1} \left(\underbrace{d\sigma_{n+1}^{\text{R}} - d\sigma_{n+1}^{\text{S}}}_{\text{bottleneck}} \right)$$

Calculation ingredients

- 1. NJet One-loop virtual matrix elements
 - QCDLoop, libqd, libVc
- Sherpa MC Born, Integrated sub, Real + sub
 ▶ Comix, FastJet, LHAPDF, ROOT
- 3. Linked with BLHA interface

Binoth Les Houches Accord interface to One Loop matrix elements

BLHA

 Simple uniform interface between Monte-Carlo and One Loop providers

BLHA in NJet 2.0

- Support BLHA1 and BLHA2
- Control all settings via order file
- Provide colour/spin-correlated trees
- Provide leading/subleading colour and desymmetrized amplitudes

BLHA in Sherpa

- NJet 2.0 trees tested with ad hoc BLHA2 in Sherpa
- Official interface for custom trees would be useful

Loop amplitudes

- Loop amplitudes lose accuracy in special kinematic regions
- Tracking these regions gets harder with more legs

NJet strategy

- Use universal scaling test to detect catastrophic cancellations
- Re-evaluate failed points in higher precision

Scaling test

- Evaluate twice and compare
- Parallelized with SSE (libVc)
- Overall < 10% slowdown

Advanced methods for computing Loop amplitudes

- Generalized unitarity
- Trees from Berends-Giele recursion

Time per phase-space point for dominating channels $\mathsf{T}(n)\sim 2^n n^6 \ \underline{n!}, \qquad n-\text{number of legs}$

Getting rid of the factorial

- Desymmetrizing final states (no need for MC support)
- Separate integration of leading/subleading colour (MC support would improve automation)

Desymmetrized amplitudes

Observation

- Squared amplitudes are totally symmetric over final state gluons
- Gluon phase space integration is a symmetric operator

Idea

 Replace squared amplitudes with something simpler (specialized full colour sum, no change on the MC side)

Example:

$$\iiint_{a}^{b} (x^{2}y + x^{2}z + xy^{2} + xz^{2} + y^{2}z + yz^{2}) dx dy dz = \iiint_{a}^{b} 6x^{2}y dx dy dz$$

Get the same result $n_g!/2$ times cheaper

	$gg \rightarrow 3g$	$gg \rightarrow 4g$	$gg \rightarrow 5g$
Standard sum	0.22 s	6.19 s	171.31 s
De-symmetrized	0.07 s	0.50 s	2.76 s
Speedup	imes 3	$\times 12$	$\times 60$

Why split into leading/subleading colour (at high multiplicity)

Subleading colour

- Order of magnitude slower
- Order of magnitude smaller
- Often cannot be ignored

Separate integration

• Full colour 5-10 times faster

Disadvantages

- Manual (no MC support)
- μ_R dep. has to be corrected
- Not standardized in BLHA

ROOT NTuples output

[arXiv:1003.1241]

Store in NTuples:

- Can change scales and/or PDFs during analysis
- Easy to create APPLgrid's
- Takes a lot of disk space
- Needs custom software for full flexibility

Analyze on-the-fly:

- Easy to set-up
- No need to save events
- Can use standard tools: **Rivet**
- Scale changes and PDF variations are very expensive

Possible improvements

- ► Use several Rivet analyses with different μ_R and μ_F in a single run would allow to do simple NLO calculations on-the-fly.
- Interface for custom analysis codes providing information similar to what is passed to NTuples (extend Rivet interface?)

Five final state QCD partons limit

- ► Using **Comix** instead of **AMEGIC** allows to get approximately 1–2 final state partons more.
- Bottleneck not in speed but in memory consumption.
 Especially for "Process" generation.
- ► Using Min/Max_N_Quarks helps a bit, but still couldn't generate "Process" directory for Z + 5 jets.
- Are "Process" directories compatible between different minor Sherpa releases?

Conclusions

Summary

- High multiplicity calculations remain a challenge
- \blacktriangleright First NLO results for 5 jets and $\gamma\gamma+3$ jets at LHC
- NJet 2.0 with improved speed and new processes

Wishlist for Sherpa

- Support of BLHA2 features (accuracy, trees, etc)
- Leading/Subleading colour splitting support
- More flexibility in on-the-fly analysis (scales, PDFs, grids)
- Less memory demanding Comix "Process" generation

Bonus material

Left: 7 gluon squared amplitude. Right: 4 quarks + 3 gluons.

Thick lines – double precision.

Thin lines – fixed with quadruple precision.

Full colour and helicity sum time per point [clang, Xeon 3.30 GHz].

process	$T_{sd}[s]$	$T_{4 \text{ dig.}}[\mathbf{s}] (\%)$	process	$T_{sd}[s]$	$T_{4 \text{ dig.}}[s] (\%)$
4g	0.030	0.030 (0.00)	5 g	0.22	0.22 (0.22)
$\overline{u}u+2g$	0.032	0.032 (0.00)	$\overline{u}u+3g$	0.34	0.35 (0.06)
$\overline{u}u\overline{d}d$	0.011	0.011 (0.00)	$\overline{u}u\overline{d}d+g$	0.11	0.11 (0.00)
$\overline{u}u\overline{u}u$	0.022	0.022 (0.00)	$\overline{u}u\overline{u}u+g$	0.22	0.22 (0.03)
process	$T_{sd}[s]$	$T_{4 \text{ dig.}}[s] (\%)$	process	$T_{sd}[s]$	$T_{4 \text{ dig.}}[s] (\%)$
6 g	6.19	6.81 (1.37)	7 g	171.3	276.7 (8.63)
$\overline{u}u+4g$	7.19	7.40 (0.38)	$\overline{u}u+5g$	195.1	241.2 (3.25)
$\overline{u}u\overline{d}d+2g$	2.05	2.06 (0.08)	$\overline{u}u\overline{d}d+3g$	45.7	48.8 (0.88)
$\overline{u}u\overline{u}u+2g$	4.08	4.15 (0.21)	$\overline{u}u\overline{u}u+3g$	92.5	101.5 (1.29)
$\overline{u}u\overline{d}d\overline{s}s$	0.38	0.38 (0.00)	$\overline{u}u\overline{d}d\overline{s}sg$	7.9	8.1 (0.23)
$\overline{u}u\overline{d}d\overline{d}d$	0.74	0.74 (0.00)	$\overline{u}u\overline{d}d\overline{d}dg$	15.8	16.2 (0.29)
$\overline{u}u\overline{u}u\overline{u}u$	2.16	2.17 (0.02)	$\overline{u}u\overline{u}u\overline{u}u\overline{u}ug$	47.1	48.6 (0.41)

All times include two evaluations for the scaling test.