Minimum Bias with SHRiMPS in SHERPA

Korinna Zapp

(with H. Hoeth, V. Khoze, F. Krauss, A. Martin, M. Ryskin

CERN Theory Division

Munich 10.01.2014

MB in SHERPA

Korinna Zapp

Outline

Introduction

KMR model in a nutshell

SHRiMPS model: exclusive final states

Comparison to data

Wrap-up

MB in SHERPA

Korinna Zapp

Why care about Minimum Bias?

Interesting in its own right

- most complete view of physics at LHC
- includes elastic scattering, low and high mass diffraction, central exclusive production, inelastic interactions, hard scattering, ...
- so far not completely understood
- fun processes like elastic Higgs production
- TOTEM experiment designed to study soft QCD

Important for hard physics

- intimately connected to underlying event
 - affects all measurements at the LHC
 - for instance: jet vetos in VBF
- pile-up is minimum bias

MB in SHERPA

Korinna Zapp

Introduction

optical theorem

$$\sigma_{\text{tot}}(s) = \frac{1}{s} \operatorname{Im}[\mathcal{A}_{\text{el}}(s, t = 0)]$$

Korinna Zapp Introduction KMR model SHRiMPS model Data comparison Wrap-up

MB in SHERPA

- grey blob: exchange of vacuum quantum numbers
- compute A_{el}
 - Khoze-Martin-Ryskin (KMR) model
- cut to obtain differential total cross section
 - allows for MC event generation
 - SHRiMPS model

Soft and Hard Reactions involving Multi-Pomeron Scattering

Eikonal models

eikonal ansatz:

$$A(s,b) = i\left(1 - e^{-\Omega(s,b)/2}\right) = i\sum_{n=1}^{\infty} \underbrace{1}_{n}$$

Good-Walker states (diffractive eigenstates):

$$|p
angle = \sum_{i=1}^{N_{\rm GW}} a_i |\phi_i
angle$$

- allows for low mass diffractive excitations
- one single-channel eikonal Ω_{ik} per combination of Good-Walker states

$$\left(1 - e^{-\Omega(s,b)/2}\right) o \sum_{i,k=1}^{N_{\rm GW}} |a_i|^2 |a_k|^2 \left(1 - e^{-\Omega_{ik}(s,b)/2}\right)$$

MB in SHERPA

Korinna Zapp

KMR approach

eikonal Ω_{ik} : product of two parton densities $\omega_{i(k)}$

$$egin{aligned} \Omega_{ik}(s,\mathbf{b}) = \ &rac{1}{2eta_0^2}\int\!\mathrm{d}\mathbf{b}_1\mathrm{d}\mathbf{b}_2\,\delta^2(\mathbf{b}-\mathbf{b}_1+\mathbf{b}_2)\omega_{i(k)}(y,\mathbf{b}_1,\mathbf{b}_2)\omega_{(i)k}(y,\mathbf{b}_1,\mathbf{b}_2) \end{aligned}$$

- $\omega_{i(k)}$: density of GW state *i* in presence of state *k*
- $\omega_{i(k)}$ obey evolution equation in rapidity
- boundary conditions: (dipole) form factors

MB in SHERPA

Korinna Zapp

KMR model: evolution equations

Bare Pomeron Contribution

evolution equation for parton density

$$\frac{\mathrm{d}\omega_{i(k)}(y)}{\mathrm{d}y} = \Delta\omega_{i(k)}(y)$$
$$\frac{\mathrm{d}\omega_{(i)k}(y)}{\mathrm{d}y} = \Delta\omega_{(i)k}(y)$$

MB in SHERPA

Korinna Zapp

Introduction KMR model SHRiMPS model Data comparison Wrap-up

where $\Delta = \alpha_{\mathbb{P}}(0) - 1$

probability for emitting an additional gluon per unit rapidity

KMR model: evolution equations

Rescattering

with $\lambda = g_{3\mathbb{P}}/g_{\mathbb{P}N}$

- ► high density & strong coupling regime → rescattering large triple pomeron vertex
- sum over rescattering/absorption diagrams on k and i

$$\frac{\mathrm{d}\omega_{i(k)}(y)}{\mathrm{d}y} = \Delta\omega_{i(k)}(y) \left[\frac{1 - e^{-\lambda\omega_{i(k)}(y)/2}}{\lambda\omega_{i(k)}(y)/2}\right] \left[\frac{1 - e^{-\lambda\omega_{(i)k}(y)/2}}{\lambda\omega_{(i)k}(y)/2}\right]$$
$$\frac{\mathrm{d}\omega_{(i)k}(y)}{\mathrm{d}y} = \Delta\omega_{(i)k}(y) \left[\frac{1 - e^{-\lambda\omega_{i(k)}(y)/2}}{\lambda\omega_{i(k)}(y)/2}\right] \left[\frac{1 - e^{-\lambda\omega_{(i)k}(y)/2}}{\lambda\omega_{(i)k}(y)/2}\right]$$

Korinna Zapp Introduction KMR model SHRiMPS model Data comparison Wrap-up

MB in SHERPA

SHRiMPS model

cutting a simple diagram:

inelastic scattering

a even simpler diagram:

- elastic scattering
- cutting a triple-pomeron vertex:

- colour singlet exchange
- high mass diffraction
- rescattering

MB in SHERPA

Global event properties

select elastic, low-mass diffractive or inelastic mode

according to cross sections

Elastic and low-mass diffractive

fairly straight forward

Inelastic

fix combination of colliding GW states

according to contribution to inelastic cross section

- fix impact parameter
- assume ladders to be independent
- number of ladders: Poissonian with parameter Ω_{ik}
- ▶ for each ladder fix transverse position **b**_{1,2}

MB in SHERPA

Korinna Zapp

Generating Ladders

- decompose protons using infra-red continued pdf's
- generate emissions using pseudo Sudakov form factor

$$\begin{split} \mathcal{S}(y_0, y_1) &= \exp\left\{-\int_{y_0}^{y_1} \mathrm{d}y \int \mathrm{d}k_{\perp}^2 \, \frac{C_A \alpha_s(k_{\perp}^2)}{\pi k_{\perp}^2} \\ &\times \left(\frac{q_{\perp}^2}{Q_0^2}\right)^{\frac{C_A}{\pi} \alpha_s(q_{\perp}^2) \Delta y} \\ &\times \left(\frac{1 - e^{\lambda \omega_{i(k)}(y)/2}}{\lambda \omega_{i(k)}(y)/2}\right) \left(\frac{1 - e^{\lambda \omega_{(i)k}(y)/2}}{\lambda \omega_{(i)k}(y)/2}\right) \end{split}$$

MB in SHERPA

Korinna Zapp

Introduction KMR model SHRiMPS model Data comparison Wrap-up

QCD; Regge weight; rescattering weight

infra-red continuation

Generating Ladders

- decompose protons using infra-red continued pdf's
- generate emissions using pseudo Sudakov form factor

MB in SHERPA

Korinna Zapp

KMR model

SHRiMPS model

- infra-red continuation
- dynamical Q₀²
- ► t-channel propagators can be colour singlets or octets probabilities for these depend on parton densities and λ
- generates dynamical Δ
- correct hardest emission to pQCD MEs
- allow for parton showering

Generating Ladders

- decompose protons using infra-red continued pdf's
- generate emissions using pseudo Sudakov form factor
- infra-red continuation
- dynamical Q₀²
- ► t-channel propagators can be colour singlets or octets probabilities for these depend on parton densities and λ
- generates dynamical Δ
- correct hardest emission to pQCD MEs
- allow for parton showering

MB in SHERPA

Korinna Zapp

Rescattering & Hadronisation

Rescattering

- partons may exchange rescatter ladders
- rescatters of rescatters of rescatters...

Hadronisation

- colour reconnections
- probability for colour swap decreases with distance

similar to PYTHIA model

hadronisation with SHERPA's cluster hadronisation

Cross Sections

 $\Delta = 0.25, \ \lambda = 0.35, \ \beta_0^2 = 25 \, {\rm mb}$

MB in SHERPA Korinna Zapp

Differential Elastic Cross Section

MB in SHERPA

Korinna Zapp

MB in SHERPA

MB in SHERPA

MB in SHERPA Korinna Zapp

MB in SHERPA Korinna Zapp

MB in SHERPA

Korinna Zapp Introduction KMR model SHRiMPS model Data comparison

MB in SHERPA Korinna Zapp

MB in SHERPA

Korinna Zapp

MB in SHERPA

Rapidity Gap Cross Section @7 TeV

MB in SHERPA

Wrap-up

Status

- model for soft & semi-hard QCD based on KMR model
- complete picture including all interactions

elastic, low & high mass diffractive, inelastic

- describes data reasonably well
- included in SHERPA 2.0.0

Outlook

- finish tuning and publish paper
- formulate as underlying event model
- include secondary Reggeons (quarks)
- allow for open and closed heavy flavour production

MB in SHERPA

Korinna Zapp

MB in SHERPA

Korinna Zapp

s-Channel Unitarity and Cross Sections

optical theorem relates total cross section σ_{tot} to elastic forward scattering amplitude A(s, t) through

$$\sigma_{ ext{tot}}(s) = rac{1}{s} \operatorname{Im}[\mathcal{A}(s,t=0)$$

▶ rewrite A(s, t) as A(s, b) in impact parameter space

$$\mathcal{A}(s,t=-\mathbf{q}_{\perp}^2)=2s\int\!\mathrm{d}\mathbf{b}\,\mathrm{e}^{i\mathbf{q}_{\perp}\cdot\mathbf{b}}\mathcal{A}(s,b)$$

cross sections

$$\begin{aligned} \sigma_{\rm tot}(s) &= 2 \int d\mathbf{b} \, {\rm Im}[A(s, b)] \\ \sigma_{\rm el}(s) &= 2 \int d\mathbf{b} \, |A(s, b)|^2 \\ \sigma_{\rm inel}(s) &= \sigma_{\rm tot}(s) - \sigma_{\rm el}(s) \end{aligned}$$

▶ N.B.: real part of A(s, b) vanishes

MB in SHERPA

Korinna Zapp

Single-Channel Eikonal Model

cross sections in eikonal model

$$\begin{split} \sigma_{\text{tot}}(s) &= 2 \int \! \mathrm{d} \mathbf{b} \, \left(1 - e^{-\Omega(s,b)/2} \right) \\ \sigma_{\text{el}}(s) &= 2 \int \! \mathrm{d} \mathbf{b} \, \left(1 - e^{-\Omega(s,b)/2} \right)^2 \\ \sigma_{\text{inel}}(s) &= \int \! \mathrm{d} \mathbf{b} \, \left(1 - e^{-\Omega(s,b)} \right) \end{split}$$

MB in SHERPA Korinna Zapp Introduction KMR model SHRiMPS model Data comparison Wrap-up

Multi-Channel Eikonals

Cross sections with Good-Walker states

► decompose incoming state $|j\rangle = a_{jk}|\phi_k\rangle$ and write $\langle j|\text{Im}\mathcal{T}|j\rangle = \sum_k |a_{jk}|^2 T_k \equiv \langle T\rangle$

allows to write cross sections as

$$\frac{\mathrm{d}\sigma_{\mathrm{tot}}}{\mathrm{d}\mathbf{b}} = 2\mathrm{Im}\langle j|\mathcal{T}|j\rangle = 2\langle T\rangle$$

$$\frac{\mathrm{d}\sigma_{\mathrm{el}}}{\mathrm{d}\mathbf{b}} = |\langle j|\mathcal{T}|j\rangle|^2 = \langle T\rangle^2$$

$$\frac{\mathrm{d}\sigma_{\mathrm{el+SD}}}{\mathrm{d}\mathbf{b}} = |\langle \phi_k|\mathcal{T}|j\rangle|^2 = \sum_k |a_{jk}|^2 T_k^2 = \langle T^2\rangle$$

$$\frac{\mathrm{d}\sigma_{\mathrm{SD}}}{\mathrm{d}\mathbf{b}} = \langle T^2\rangle - \langle T\rangle^2$$

 single diffraction given by statistical dispersion of absorption probabilities of diffractive eigenstates MB in SHERPA Korinna Zapp htroduction

Selecting the Modes

select elastic vs. inelastic processes according to

$$\begin{split} \sigma_{\rm tot}^{pp} &= 2 \int \! \mathrm{d}\mathbf{b} \, \sum_{i,k=1}^{S} \, |a_i|^2 |a_k|^2 \, \left(1 - e^{-\Omega_{ik}(b)/2}\right) \\ \sigma_{\rm inel}^{pp} &= \int \! \mathrm{d}\mathbf{b} \, \sum_{i,k=1}^{S} \, |a_i|^2 |a_k|^2 \, \left(1 - e^{-\Omega_{ik}(b)}\right) \\ \sigma_{\rm el}^{pp} &= \int \! \mathrm{d}\mathbf{b} \, \left\{ \sum_{i,k=1}^{S} \, \left[|a_i|^2 |a_k|^2 \, \left(1 - e^{-\Omega_{ik}(b)/2}\right) \right] \right\}^2 \\ \sigma_{\rm el+sd}^{pp} &= \int \! \mathrm{d}\mathbf{b} \, \sum_{i=1}^{S} |a_i|^2 \left\{ \sum_{k=1}^{S} \, |a_k|^2 \, \left(1 - e^{-\Omega_{ik}(b)/2}\right) \right\}^2 \\ \sigma_{\rm el+2sd+dd}^{pp} &= \int \! \mathrm{d}\mathbf{b} \, \sum_{i,k=1}^{S} |a_i|^2 |a_k|^2 \, \left\{ \left(1 - e^{-\Omega_{ik}(b)/2}\right) \right\}^2 \end{split}$$

MB in SHERPA

Aside: continued pdf's

- \blacktriangleright sea (anti)quarks: scale down to vanish as $Q^2
 ightarrow 0$
- \blacktriangleright valence quarks: transform to pure valence contribution as $Q^2 \rightarrow 0$
- ▶ same shape as valence quarks as $Q^2 \rightarrow 0$, scale to satisfy momentum sum rule

MB in SHERPA

Korinna Zapp