Top-quark measurements at LHCb

Rhorry Gauld

Contents

Introduction and motivations

- Feasibility of cross section measurements
 - arXiv 1311.1810

- Charge asymmetry measurements
 - coming soon

ΟΝ ОТВ ELIE V Е А Т Н NGHAI HSAY s

www.eyechartmaker.com

LHCb - important details

- LHCb: a general purpose detector instrumented within $2 \le \eta \le 5$ **Recorded**/Potential luminosity:
 - (2011): 1.1 fb⁻¹ $\sqrt{s} = 7$ TeV (2012): 2.1 fb⁻¹ $\sqrt{s} = 8$ TeV (2015-2017): ~5 fb⁻¹ $\sqrt{s} = 13$ TeV
 - (2020-2030): ~50 fb⁻¹ $\sqrt{s} = 14$ TeV

$$x_{1,(2)} = \frac{m_T}{\sqrt{\hat{s}}} \left(e^{(-)y_3} + e^{(-)y_4} \right)$$

cross section measurements

Top studies at LHCb proposed here, arXiv:1103.3747 A. Kagan, J. Kamenik, G. Perez, S. Stone arXiv:1311.1810 RG (this work)

Have to select realistic final states

Top studies at LHCb proposed here, arXiv:1103.3747 A. Kagan, J. Kamenik, G. Perez, S. Stone arXiv:1311.1810 RG (this work)

Have to select realistic final states

Top studies at LHCb proposed here, arXiv:1103.3747 A. Kagan, J. Kamenik, G. Perez, S. Stone arXiv:1311.1810 RG (this work)

Have to select realistic final states

Top studies at LHCb proposed here, arXiv:1103.3747 A. Kagan, J. Kamenik, G. Perez, S. Stone arXiv:1311.1810 RG (this work)

di-lepton
$$t\bar{t} \rightarrow e^{\pm}\mu^{\mp}bX$$

Single-lepton

- generate samples (POWHEG) and match to parton shower (Pythia8176)
- apply <u>realistic</u> cuts: I pT > 20 GeV and b pT > 60 GeV
- apply b-tagging efficiencies: 70% efficiency and 1% mis-tag (non b-jet)
- apply muon efficiencies: 75% (trigger, identification, reconstruction)

Single-lepton

- generate samples (POWHEG) and match to parton shower (Pythia8176)
- apply <u>realistic</u> cuts: I pT > 20 GeV and b pT > 60 GeV
- apply b-tagging efficiencies: 70% efficiency and 1% mis-tag (non b-jet)
- apply muon efficiencies: 75% (trigger, identification, reconstruction)

Di-lepton

- generate samples (POWHEG) and match to parton shower (Pythia8176)
- apply <u>realistic</u> cuts: **mu/e/b pT > 20 GeV**
- apply b-tagging efficiencies: 90% efficiency and 5% mis-tag (non b-jet)
- apply muon efficiencies: 75% (trigger, identification, reconstruction)

leptonic asymmetries for LHCb (all at 14 TeV)

Overview

Phys. Lett. B195(1987) 74 F. Halzen, P. Hoyer, and C. Kim Nucl. Phys. B327 (1989) 49 P. Nason, S. Dawson, and R. K. Ellis arXiv:hep-ph/9802268, arXiv:hep-ph/9807420 J.H.Kuhn, G. Rodrigo ... and many others since

$$A_{c} = \frac{\alpha_{s}^{3}\sigma_{a}^{s(1)} + \alpha_{s}^{4}\sigma_{a}^{s(2)} + \alpha_{s}^{2}\alpha_{e}\sigma_{a}^{e(1)} + \alpha_{s}^{2}\alpha_{w}\sigma_{a}^{w(1)} + \cdots}{\alpha_{s}^{2}\sigma_{s}^{s(0)} + \alpha_{s}^{3}\sigma_{s}^{s(1)} + \alpha_{s}^{4}\sigma_{s}^{s(2)} + \cdots},$$

$$= \alpha_s \frac{\sigma_a^{s(1)}}{\sigma_s^{s(0)}} + \alpha_e \frac{\sigma_a^{e(1)}}{\sigma_s^{s(0)}} + \alpha_w \frac{\sigma_a^{w(1)}}{\sigma_s^{s(0)}} + \alpha_s^2 \frac{1}{\sigma_s^{s(0)}} \left(\sigma_a^{s(2)} - \frac{\sigma_a^{s(1)} \sigma_s^{s(1)}}{\sigma_s^{s(0)}} \right) \cdots$$

$$A^{l} = \int_{2.0}^{4.5} d\eta_{l} \left(\frac{d\sigma^{l^{+}b}/d\eta_{l} - d\sigma^{l^{-}b}/d\eta_{l}}{d\sigma^{l^{+}b}/d\eta_{l} + d\sigma^{l^{-}b}/d\eta_{l}} \right)$$

 $2.0 < \eta(l, b) < 4.5$ $p_T(l/b) > 20/60 \text{ GeV}$ $\Delta R(l^{\pm}, \text{jet}) \ge 0.5$

Signal contribution to **numerator** Computed with NNPDF2.3 NLO as 119 PDFs

N^l (f	N^l (fb)		$\mu = m_t$	$\mu = 2m_t$
	$u ar{u}$	41.85	30.90	24.37
${\cal O}(lpha_s^3)$	d ar d	18.09	12.87	9.91
	ug	1.90	1.22	0.85
	dg	0.72	0.45	0.34
$\mathcal{O}(lpha_s^2 lpha_e)$	Total	7.05	5.79	4.97
Tota	al	69.60	51.23	40.44

$$A^{l} = \int_{2.0}^{4.5} d\eta_{l} \left(\frac{d\sigma^{l^{+}b}/d\eta_{l} - d\sigma^{l^{-}b}/d\eta_{l}}{d\sigma^{l^{+}b}/d\eta_{l} + d\sigma^{l^{-}b}/d\eta_{l}} \right)$$

 $2.0 < \eta(l, b) < 4.5$ $p_T(l/b) > 20/60 \text{ GeV}$ $\Delta R(l^{\pm}, \text{jet}) \ge 0.5$

Signal contribution to **denominator** Computed with various LO/NLO NNPDF2.3 PDFs

		D^l (
I	PDF	$\mu = m_t/2$	$\mu = m_t$	$\mu = 2m_t$	A^l (%)
NL	O 119	4626	3512	2742	1.48(2)
L	O 119	6225	4663	3586	1.12(2)
L	O 130	6761	4961	3752	1.05(3)

 $2.0 < \eta(l, b) < 4.5$ $p_T(l/b) > 20/60 \text{ GeV}$ $\Delta R(l^{\pm}, \text{jet}) \ge 0.5$

What about backgrounds!?

What about backgrounds!?

27

DI-IEPTON asymmetry

 $|\Delta_v|$

 $A_{fb}^{ll} = \int d\Delta_y \frac{\left(d\sigma^{\mu e b}(\Delta_y > 0) - d\sigma^{\mu e b}(\Delta_y < 0)\right)/d\Delta_y}{d\sigma^{\mu e b}/d\Delta_y} \quad \begin{aligned} 2.0 < \eta(e,\mu,b) < 4.5\\ p_T(e,\mu,b) > 20 \text{ GeV}\\ \Delta R(l^{\pm},\text{jet}) \ge 0.5 \end{aligned}$

Signal contribution to numerator Computed with NNPDF2.3 NLO as 119 PDFs							
N_{fb}^{ll} (fb)	$\mu = m_t/2$	$\mu = m_t$	$\mu = 2m_t$			
	$u\bar{u}$	0.889	0.659	0.490			
${\cal O}(lpha_s^3)$	$d \overline{d}$	0.319	0.232	0.176			
	ug	0.095	0.070	0.045			
	dg	0.031	0.021	0.013			
$\mathcal{O}(\alpha_s^2 \alpha_e)$	Total	0.163	0.134	0.107			
Total		1.498	1.116	0.832			

Rhorry Gauld , Top Quark Physics Day, 11/08/2014

Di-lepton asymmetry

 $A_{fb}^{ll} = \int d\Delta_y \frac{\left(d\sigma^{\mu e b}(\Delta_y > 0) - d\sigma^{\mu e b}(\Delta_y < 0)\right)/d\Delta_y}{d\sigma^{\mu e b}/d\Delta_y} \quad \begin{aligned} 2.0 < \eta(e,\mu,b) < 4.5\\ p_T(e,\mu,b) > 20 \text{ GeV}\\ \Delta R(l^{\pm},\text{jet}) \ge 0.5 \end{aligned}$

Signal contribution to **denominator** Computed with various LO/NLO NNPDF2.3 PDFs

	D_{fb}^{ll}			
PDF	$\mu = m_t/2$	$\mu = m_t$	$\mu = 2m_t$	A_{fb}^{ll} (%)
NLO 119	110.4	85.0	67.4	1.30(7)
LO 119	160.7	120.7	93.3	0.91(2)
LO 130	176.6	130.0	98.8	0.85~(1)

Di-lepton asymmetry

- LHCb can measure ttbar cross section
 - first of its kind at high pseudorapidity

- Charge asymmetry measurements possible
 - single-lepton channel promising
 - experimentally still challenging...
 - a background fit in many channels necessary

Thank you for your attention!

many years year accorden:

Feasibility - event yield

Some other channels (loose cuts)

- generate ttbar (**POWHEG**) and match to parton shower (**Pythia8176**)
- build R = 0.5 anti-kt jets (j)
- truth match parton level b-quarks to jets within dR < 0.5 (b)
- apply loose cuts: l(e,mu) pT > 4 GeV and j/b pT > 20 GeV
- apply <u>acceptance</u> cuts: 2.0 < I, j/b eta < 4.5

Data	1fb^{-1}		2fb^{-1}		$5/50 {\rm fb}^{-1}$				
$d\sigma({\rm fb})$	$7 { m TeV}$		$7 { m TeV}$		7 TeV 8 TeV		14 TeV		\mathcal{I}
lb	285	\pm	52	504	\pm	94	4366	\pm	663
lbj	97	\pm	21	198	\pm	35	2335	\pm	323
lbb	32	\pm	6	65	\pm	12	870	\pm	116
lbbj	10		2	26		4	487	\pm	76
$\left(l^{+}l^{-}\right)$	44	\pm	9	79	\pm	15	635	\pm	109
l^+l^-b	19		4	39		8	417	\pm	79

Rhorry Gauld , Top Quark Physics Day, 11/08/2014

Single-lepton 14 TeV (lbj)

 $\begin{array}{c} 14 \ TeV \\ l^{\pm}bj \end{array}$

LHCb b-tagging

Theoretical systematics

$$\sigma = \int \frac{\text{Scale}}{dx_a dx_b f_a(x_a, \mu_F^2) f_b(x_b, \mu_F^2) \hat{\sigma}(\mu_f, \mu_R, m^2, \beta)}$$
PDF

$$\begin{aligned} & \hat{\sigma}(\beta) = \frac{\alpha_s^2}{m^2} \left(\sigma_{ij}^{(0)} + \alpha_s \sigma_{ij}^{(1)} + \alpha_s^2 \sigma_{ij}^{(2)} + \mathcal{O}(\alpha_s^3) \right) \\ & \text{Top mass} \end{aligned}$$

$$\frac{1}{2} < \frac{\mu_F}{\mu_R} < 2$$

$$\alpha_s(M_Z) = 0.1184 \pm 0.0007$$

$$\delta PDF = 1\sigma CL$$

$$\delta m_t = 1.5 \text{ GeV}$$

Order	PDF	$\sigma(\mathrm{pb})$	$\delta_{\rm scale} \ ({\rm pb})$	$\delta_{\mathrm{PDF}} \ (\mathrm{pb})$	δ_{α_s} (pb)	$\delta_{m_t} (\mathrm{pb})$	$\delta_{\mathrm{total}} \; \mathrm{(pb)}$
NNLO [*] (inc.)		832.0	$ \begin{array}{c} +18.7 & (+2.2\%) \\ -27.4 & (-3.3\%) \end{array} $	+25.1(+3.0%) -25.1(-3.0%)	$+0.0(+0.0\%)\ -0.0(-0.0\%)$	+34.9(+4.2%) -33.7(-4.1%)	$+61.7 (+7.4\%) \\ -69.7 (-8.4\%)$
NLO(inc.)	ABM	771.9	$+91.0(+11.8\%)\ -92.4(-12.0\%)$	$+9.4(+1.2\%)\ -9.4(-1.2\%)$	$^{+0.0(+0.0\%)}_{-0.0(-0.0\%)}$	$+32.3(+4.2\%)\ -31.9(-4.1\%)$	$^{+124.7(+16.1\%)}_{-125.7(-16.3\%)}$
NLO(LHCb)		117.2	+14.5(+12.3%) -14.1(-12.0%)	$^{+2.0(+1.7\%)}_{-2.0(-1.7\%)}$	$+0.0(+0.0\%)\ -0.0(-0.0\%)$	$^{+5.2(+4.4\%)}_{-5.1(-4.3\%)}$	$+20.0(+17.1\%)\ -19.5(-16.7\%)$
$NNLO^{*}(inc.)$		952.8	$+23.3 (+2.4\%) \\ -34.5 (-3.6\%)$	$^{+22.4(+2.3\%)}_{-19.9(-2.1\%)}$	$^{+14.0(+1.5\%)}_{-14.0(-1.5\%)}$	$+39.2(+4.1\%)\ -37.8(-4.0\%)$	$+70.6 (+7.4\%) \\ -79.5 (-8.3\%)$
NLO(inc.)	CT10	832.6	$^{+97.0(+11.7\%)}_{-96.7(-11.6\%)}$	+19.6(+2.4%) -20.2(-2.4%)	$+9.2(+1.1\%) \\ -9.2(-1.1\%)$	$+34.0(+4.1\%)\ -33.3(-4.0\%)$	$+137.4(+16.5\%)\ -136.6(-16.4\%)$
NLO(LHCb)		137.0	$+16.7(+12.2\%)\ -16.4(-12.0\%)$	$+5.0(+3.6\%)\ -4.6(-3.4\%)$	$+1.8(+1.3\%)\ -1.8(-1.3\%)$	$+5.9(+4.3\%) \\ -5.8(-4.2\%)$	$^{+24.7(+18.0\%)}_{-24.0(-17.5\%)}$
$NNLO^{*}(inc.)$		970.5	$+22.1 (+2.3\%) \\ -22.0 (-2.3\%)$	$^{+15.7(+1.6\%)}_{-25.7(-2.6\%)}$	$+12.8(+1.3\%)\ -12.8(-1.3\%)$	$+39.6(+4.1\%)\ -38.4(-4.0\%)$	$+66.6 (+6.9\%) \\ -70.0 (-7.2\%)$
NLO(inc.)	HERA	804.2	$^{+91.9(+11.4\%)}_{-87.6(-10.9\%)}$	$^{+16.1(+2.0\%)}_{-21.9(-2.7\%)}$	$^{+5.3(+0.7\%)}_{-5.3(-0.7\%)}$	$+33.4(+4.1\%)\ -32.4(-4.0\%)$	$+129.3(+16.1\%)\ -127.1(-15.8\%)$
NLO(LHCb)		124.7	+14.8(+11.8%) -13.7(-11.0%)	$+3.0(+2.4\%)\ -3.0(-2.4\%)$	$^{+1.1(+0.9\%)}_{-1.1(-0.9\%)}$	$^{+5.5(+4.4\%)}_{-5.3(-4.3\%)}$	$^{+21.1(+16.9\%)}_{-19.9(-15.9\%)}$
$NNLO^{*}(inc.)$		953.6	$+22.7 (+2.4\%) \\ -33.9 (-3.6\%)$	$^{+16.2(+1.7\%)}_{-17.8(-1.9\%)}$	$+12.8(+1.3\%)\ -12.8(-1.3\%)$	$+39.1(+4.1\%)\ -37.9(-4.0\%)$	$+66.9 (+7.0\%) \\ -77.7 (-8.1\%)$
NLO(inc.)	MSTW	885.6	$^{+107.2(+12.1\%)}_{-105.7(-11.9\%)}$	$^{+16.0(+1.8\%)}_{-19.4(-2.2\%)}$	$^{+10.1(+1.1\%)}_{-10.1(-1.1\%)}$	$+36.2(+4.1\%)\ -35.3(-4.0\%)$	$^{+148.1(+16.7\%)}_{-147.3(-16.6\%)}$
NLO(LHCb)		144.4	$+18.6(+12.8\%)\ -17.8(-12.3\%)$	$+3.5(+2.4\%)\ -3.9(-2.7\%)$	$+1.9(+1.3\%)\ -1.9(-1.3\%)$	$^{+6.2(+4.3\%)}_{-6.1(-4.2\%)}$	$^{+25.9(+18.0\%)}_{-25.2(-17.5\%)}$
$NNLO^{*}(inc.)$		977.5	$+23.6 (+2.4\%) \\ -35.4 (-3.6\%)$	$+16.4(+1.7\%)\ -16.4(-1.7\%)$	$^{+12.2(+1.3\%)}_{-12.2(-1.3\%)}$	$^{+40.4(+4.1\%)}_{-39.1(-4.0\%)}$	$+68.9 (+7.0\%) \\ -80.0 (-8.1\%)$
NLO(inc.)	NNPDF	894.5	$^{+107.6(+12.0\%)}_{-101.0(-11.3\%)}$	+12.8(+1.4%) -12.8(-1.4%)	$+9.9(+1.1\%)\ -9.9(-1.1\%)$	$+36.6(+4.1\%)\ -35.8(-4.0\%)$	$+147.6(+16.5\%)\ -140.3(-15.7\%)$
NLO(LHCb)		142.5	$+18.1(+12.7\%)\ -16.6(-11.7\%)$	$+3.0(+2.1\%)\ -3.0(-2.1\%)$	$^{+2.0(+1.4\%)}_{-2.0(-1.4\%)}$	$^{+6.2(+4.4\%)}_{-6.1(-4.3\%)}$	$+25.2(+17.7\%)\ -23.7(-16.6\%)$

Summary of theory systematics (NLO) MCFM, $\sqrt{s} = 14 \text{ TeV}$ 180 ABM11 CT10w 160 HERA1.5 $\sigma^{LHCb}(pb)$ MSTW08 140 NNPDF2.3 $\delta_{\text{total}} = \delta_{\text{scale}} + (\delta_{\text{PDF}}^2 + \delta_{\alpha_s}^2 + \delta_{m_t}^2)^{\frac{1}{2}}$ 120 100 0.118 0.116 0.117 0.119 0.120 0.121 $\alpha_s(M_Z)$

			PDF	$\delta_{ m scale}^{ m ratio}$	$\delta_{ m PDF}^{ m ratio}$	$\delta^{ m ratio}_{lpha_s}$	$\delta_{m_t}^{\mathrm{ratio}}$	$\delta_{ m total}^{ m ratio}$
$\delta_X^{\text{ratio}} = \frac{\delta_X^{\text{I}}}{\delta_X^{\text{I}}}$			ABM	$+1.05 \\ -1.00$	$^{+1.40}_{-1.40}$	$^{+0.00}_{-0.00}$	$+1.05 \\ -1.05$	$^{+1.06}_{-1.02}$
	$\delta_X^{ m LHCb}$		CT10	$^{+1.05}_{-1.03}$	$^{+1.55}_{-1.40}$	$^{+1.20}_{-1.20}$	$^{+1.06}_{-1.05}$	$^{+1.09}_{-1.07}$
	$\frac{11}{\delta NLO}$	1	HERA	$^{+1.04}_{-1.01}$	$^{+1.19}_{-0.90}$	$+1.33 \\ -1.33$	$^{+1.07}_{-1.06}$	$^{+1.05}_{-1.01}$
	o_X		MSTW	$^{+1.06}_{-1.03}$	$^{+1.35}_{-1.23}$	$+1.13 \\ -1.13$	$^{+1.05}_{-1.06}$	$^{+1.07}_{-1.05}$
			NNPDF	$^{+1.05}_{-1.03}$	$^{+1.45}_{-1.45}$	$+1.27 \\ -1.27$	$^{+1.07}_{-1.07}$	$^{+1.07}_{-1.06}$

Constraining the gluon PDF

Perform a bayesian reweighting based on statistical inference. arXiv:1012.0836 NNPDF collaboration arXiv:1205.4024 G. Watt, R. S. Thorne, applied technique to MSTW hessian set

I apply the technique to CT10w and NNPDF2.3 NLO sets

Recipe for Hessian reweighting

1) Calculate observables from eigenvector set

 $\{X_0(\mathcal{S}_0), X_1^-(\mathcal{S}_1^-), X_1^+(\mathcal{S}_1^+), \dots X_N^-(\mathcal{S}_N^-), X_N^+(\mathcal{S}_N^+)\}$

2) Generate random observables from these (storing random numbers)

$$X(\mathcal{S}_k) = X(\mathcal{S}_0) + \sum_{k=1}^{N} [X(\mathcal{S}_j^{\pm}) - X(\mathcal{S}_0)] |R_{kj}|$$

3) Apply a reweighting based on a 'measured' observable (e.g. cross-section)

$$W_k(\chi_k^2) = (\chi_k^2)^{\frac{1}{2}(N_{pts.}-1)} \exp(-\frac{1}{2}\chi_k^2)$$

4) Apply these weights to the other observables (gluon PDF, ttbar asymmetry etc.)

Follow the recipe - steps 1, 2

1) Choose observable as evolved gluon PDF, $g^{\mathrm{Hess}}(x, [Q=80~\mathrm{GeV}]^2)$

2) Generate 1000 Replicas and compare, $g^{
m rep}(x, [Q=80~{
m GeV}]^2)$

Follow the recipe - steps 3, 4

3) Pick some pseudo LHCb cross-section data, $\bar{X}_0 = rac{1}{N_{
m rep}} \sum_{k=1}^{N_{
m rep}} X_0(\mathcal{S}_0) [1+R_{k0}]$

4) Apply weights found using pseudodata to reweight evolved gluon PDF

Summary of eigenvector sensitivity

Effect of LHCb analysis cuts

Effect of LHCb analysis cuts

A few more comments

Rhorry Gauld, Top Quark Physics Day, 11/08/2014

A few more comments

Rhorry Gauld , Top Quark Physics Day, 11/08/2014

Asymmetry summaries

Rhorry Gauld , Top Quark Physics Day, 11/08/2014

LHC 8TeV Asym Systematics

CMS-PAS-TOP 12 033 8TeV

Systematic uncertainty	shift in inclusive A_C	range of shifts in differential A_C
JES	0.001	0.001 - 0.005
JER	0.001	0.001 - 0.005
Pileup	0.001	0.000 - 0.003
b tagging	0.000	0.001 - 0.003
Lepton ID/sel. efficiency	0.002	0.001 - 0.003
Generator	0.003	0.001 - 0.015
Hadronization	0.000	0.000 - 0.016
$p_{\rm T}$ weighting	0.001	0.000 - 0.003
Q^2 scale	0.003	0.000 - 0.009
W+jets	0.002	0.001 - 0.007
Multijet	0.001	0.002 - 0.009
PDF	0.001	0.001 - 0.003
Unfolding	0.002	0.001 - 0.004
Total	0.006	0.007 - 0.022