

Top quark pair production and properties in CMS Top Quark Physics Day

Thorsten Chwalek on behalf of the CMS collaboration

Institut für Experimentelle Kernphysik, Karlsruher Institut für Technologie

Karlsruher Institut für Technologie

Inclusive top pair cross sections

Differential top pair cross sections

Properties of top quark production and decay

All inclusive

holiday deals

...top pair cross sections

Lepton+Jets @ 8TeV PAS-TOP-12-006

2 channels: e+jets and µ+jets

- 1 isolated $e(\mu)$ with $p_T > 30(26)GeV$
- At least 4 jets with $p_T > 45/45/35/35GeV$
- At least 1 of these jets b-tagged

Binned max. likelihood fit to M_{lb}

- Invariant mass of the I+b system
- Jet-combination with lowest χ²
- Lept. b-candidate must be b-tagged
- Preliminary combined (e+µ) result based on 2.8fb⁻¹

$$\sigma_{t\bar{t}} = 228.4 \pm 9.0 \text{ (stat.)}_{-26.0}^{+29.0} \text{ (syst.)} \pm 10.0 \text{ (lum.) pb}$$

A paper with an **improved analysis** method and based on the **full 8 TeV dataset** is on the way...

Dilepton @ 8 TeV JHEP 02(2014)024

- 2 isolated oppositely charged leptons with p_⊤ > 20 GeV
- Inv. mass of the lepton pair $m_{\parallel} > 20$ GeV, Veto on Z mass window

e[±]µ[∓] channel

8000 6000

4000

2000

1.4

0.6

Obs/Exp

- 2 jets with p_⊤ > 20 GeV
- At least 1 of these jets b-tagged
- MET > 40 GeV (only for ge and $\mu\mu$)

Cut-and-count analysis

High signal fraction in eµ channel

 \rightarrow most precise channel

Results based **on 5.3fb**⁻¹, assuming a top mass of 172.5 GeV

	e^+e^-	$\mu^+\mu^-$	$e^{\pm}\mu^{\mp}$
$\epsilon_{\rm total}$ (%)	0.203 ± 0.012	0.270 ± 0.017	0.717 ± 0.033
$\sigma_{t\bar{t}} (pb)$	$244.3 \pm 5.2 \pm 18.6 \pm 6.4$	$235.3 \pm 4.5 \pm 18.6 \pm 6.1$	$239.0 \pm 2.6 \pm 11.4 \pm 6.2$
			Dominating channel

Combined using BLUE

 $\sigma_{t\bar{t}} = 239.0 \pm 2.1 \,(\text{stat.}) \pm 11.3 \,(\text{syst.}) \pm 6.2 \,(\text{lum.}) \,\text{pb}$

The top mass dependence between 160 GeV and 185 GeV can be parameterized as

$$\sigma_{t\bar{t}}/\sigma_{t\bar{t}} (m_t = 172.5) = 1.00 - 0.009 \times (m_t - 172.5) - 0.000168 \times (m_t - 172.5)^2$$

2 channels: eτ, μτ (hadronically dec. τ)

- 1 isolated $e(\mu)$ with $p_T > 35(30)GeV$
- At least 3 jets with $p_T > 30/30/20$ GeV
- At least 1 of them b-tagged
- 1 τ-jet with p_T > 20 GeV and opp. charge than e(μ)
- MET > 40 GeV
- Cut and count analysis
- Background estimation:
 - Misidentified τ: mainly ttbar → e/µ +jets misidentification probability is estimated in control samples (data)
 - All other BG normalizations are taken from MC simulation

- Dominating systematic uncertainties τ_h jet identification, τ_h misidentification,
- Results based on 19.7⁻¹, assuming a top mass of 172.5 GeV

$$\sigma_{t\bar{t}}(e\tau_{h}) = 255 \pm 4 \text{ (stat)} \pm 24 \text{ (syst)} \pm 7 \text{ (lumi) pb}$$

$$\sigma_{t\bar{t}}(\mu\tau_{h}) = 258 \pm 4 \text{ (stat)} \pm 24 \text{ (syst)} \pm 7 \text{ (lumi) pb}$$

Combined using BLUE

$$\sigma_{\mathrm{t}ar{\mathrm{t}}} = 257\pm3\,\mathrm{(stat)}\pm24\,\mathrm{(syst)}\pm7\,\mathrm{(lumi)\,pb}$$

Linear dependence on the assumed top quark mass

Summary of inclusive cross sections @ 8TeV

Summary of inclusive cross sections @ 8TeV

...top pair cross sections

Reconstruction and Unfolding

- Reconstruction of top pairs
 - Assignment of measured leptons and jets to the final state leptons and quarks
 - Ambiguities in the jet-quark assignment, missing jets due to acceptance
 - Ambiguities if more than one neutrino (dilepton)
- Unfolding to correct reconstructed top pairs to parton level
 - Event selection effects
 - Migration effects due to imperfect reconstruction
 - Describe these effects with a smearing matrix unfolding done by matrix inversion
 - Regularization prevents stat. fluctuations getting bigger in unfolding
- **Normalized** cross sections: some of the syst. uncertainties cancel out

CMS Preliminary, 12.1 fb⁻¹ at vs = 8 TeV Normalized diff. cross sections d dp_T [GeV⁻¹] <u>do</u> [GeV⁻] dm^{tt} e/μ + Jets Combined Data e/u + Jets Combined Data 9 using 12.1(12.2)fb⁻¹ MadGraph — MadGraph 10-2 MC@NLO MC@NLO Compare **unfolded** distributions -- POWHEG ---- POWHEG --- Approx. NNLO - ID 10 (arXiv:1205.3453) to predictions: MadGraph+Pythia Lepton+jets PowHeg+Pythia 10-5 MC@NLO+Herwig daardaa daardaa daarii ta 10^{-6 L} Approx. NNLO 100 150 200 250 300 350 400 1000 1200 1400 1600 600 800 400 p_[GeV] m^{tt} [GeV] Main systematic uncertainty: CMS Preliminary, 12.2 fb¹ at \s = 8 TeV CMS Preliminary, 12.2 fb¹ at vs = 8 TeV 25<u>×1</u>0⁻³ <u>do</u> dp^{ff} dp^{ff} Signal modeling (Q² scale,...) 위~> Dilepton Combined **Dilepton Combined** Data Data -ip — MadGraph MadGraph Good description of data by 0.6 ---- MC@NLO ---- MC@NLO --- POWHEG --- POWHEG **SM** predictions 0.5 ····· Approx. NNLO (arXiv:1210.7813) 0.4 Dilepton Cross section also as a function 0.3 of lepton- and jet-kinematics in 0.2 visible phase space -2.5 -2 -1.5 -1 -0.5 0 0.5 50 100 150 200 250 300 1 1.5 2 p₊tt [GeV]

A paper on lepton+jets and dilepton using the **full 8 TeV** dataset is on the way

Global event variables @ 8TeV PAS-TOP-012-042

- Normalized diff. cross sections using 19.7fb⁻¹
- Lepton+Jets (e/µ) channel
- Compare **unfolded** distributions to predictions:
 - MadGraph+Pythia
 - MC@NLO+Herwig
 - PowHeg+Pythia
- JES is largest systematic uncertainty
- Unfolded data distributions are well described by predictions

15 ^{11.08.14} Top guark pair production and properties in CMS

Thorsten Chwalek (KIT)

Jet-multiplicity in Dilepton @ 8TeV PAS-TOP-12-041

<u>d</u> dα d dats

Data/MC

- Normalized diff. cross sections using **19.6fb**⁻¹ as a function of the jet-multiplicity
- ... for 3 different jet- p_T thresholds
- Understand the radiation modeling in Monte Carlo
- Compare **unfolded** distributions to predictions:
 - MadGraph+Pythia
 - MC@NLO+Herwig
 - Powheg+Pythia
- Gap fraction:
 - fraction of events that do not contain additional jets above a given threshold

Overview about top properties

Higher order effect: interference of diagrams

veeeed (

20000

Theory prediction

20000

- Kühn, Rodrigo: $A_c = 0.0102 \pm 0.0005$
- Bernreuther, Si: $A_c = 0.0111 \pm 0.0004$

Charge asymmetry A_c

Sensitive variable:

$$\Delta |y| = |y_t| - |y_{\overline{t}}|$$

Definition of charge asymmetry

$$A_{C} = \frac{N_{+} - N_{-}}{N_{+} + N_{-}}$$

A_c in Lepton+jets @ 8TeV PAS-TOP-12-033

• e+jets and µ+jets combined

- 1 isolated $e(\mu)$ with $p_T > 30(26)GeV$
- At least 4 jets with p_T > 30 GeV
- At least 1 of these jets b-tagged
- BG-contamination ~20%
- BG-subtraction and regularized unfolding
- Inclusive and differential (m_t, p_{Tt}, y_t) measurements using 19.7fb⁻¹

Asymmetry	Ac
Reconstructed	0.003 ± 0.002 (stat.)
BG-subtracted	0.002 ± 0.002 (stat.)
Unfolded	$0.005 \pm 0.007 \text{ (stat.)} \pm 0.006 \text{ (syst.)}$
Theory prediction [Kühn, Rodrigo] [9, 33]	0.0102 ± 0.0005
Theory prediction [Bernreuther, Si] [34, 35]	0.0111 ± 0.0004

* Effective Axialvector-coupling of the Gluon

A_c in Dilepton @ 7TeV JHEP04(2014)191

- e⁺e⁻, μ⁺μ⁻, e⁺μ[∓] combined
 - 2 isolated leptons with $p_T > 20 \text{ GeV}$
 - At least 2 jets with $p_T > 30 GeV$
 - At least on of them b-tagged
- Low BG-contamination ~8%
- BG-subtraction and regularized unfolding
- Inclusive and differential (m_t, p_{Tt}, y_t) measurements of A_c^{lep} using 5.0fb⁻¹
- Inclusive measurement of A_c

Variable	Data (unfolded)	MC@NLO prediction	NLO theory
$A_{\rm C}$	$-0.010 \pm 0.017 \pm 0.008$	0.004 ± 0.001	0.0123 ± 0.0005
$A_{\rm C}^{\rm lep}$	$0.009 \pm 0.010 \pm 0.006$	0.004 ± 0.001	0.0070 ± 0.0003

Spin correlation @ 7TeV PRL112(2014)182001

The **difference** in Φ of the charged leptons is sensitive to $t\bar{t}$ spin correlations.

Can be measured precisely **without reconstructing** the full event kinematics

- BG-subtraction and regularized unfolding
- Results based on 5fb⁻¹
- The A_{AΦ} result strongly disfavors the uncorrelated case

$$A_{\Delta\phi} = \frac{N(\Delta\phi_{\ell^+\ell^-} > \pi/2) - N(\Delta\phi_{\ell^+\ell^-} < \pi/2)}{N(\Delta\phi_{\ell^+\ell^-} > \pi/2) + N(\Delta\phi_{\ell^+\ell^-} < \pi/2)}$$

$$A_{c_1c_2} = \frac{N(c_1c_2 > 0) - N(c_1c_2 < 0)}{N(c_1c_2 > 0) + N(c_1c_2 < 0)}$$

Asymmetry	Data (unfolded)	MC@TNLO	NLO (SM, correlated)	NLO (uncorrelated)
$\overline{\begin{matrix} A_{\Delta\phi} \\ A_{c_1c_2} \end{matrix}}$	$\begin{array}{c} 0.113 \pm 0.010 \pm 0.006 \pm 0.012 \\ -0.021 \pm 0.023 \pm 0.025 \pm 0.010 \end{array}$	$\begin{array}{c} 0.110 \pm 0.001 \\ -0.078 \pm 0.001 \end{array}$	$\begin{array}{c} 0.115^{+0.014}_{-0.016} \\ -0.078 \pm 0.006 \end{array}$	$0.210^{+0.013}_{-0.008}\\0$

R = BR(t to bW) / BR(t to Wq) PLB 736(2014) 33

- Fraction of top decays into Wb
- SM predicts R ~1
- e⁺e⁻, µ⁺µ⁻, e⁺µ[∓] channels
- Use the b-jet multiplicity as sensitive variable
- Results are based on 19.7fb⁻¹

Combined result:

R = 1.014 ±0.003 (stat.) ±0.032(syst.) Interpret as limit on R: R > 0.955 @95%C.L.

Assuming top decay into 3 generations and 3 generation CKM matrix being unitary \rightarrow translates into limit on $|V_{tb}|$: $|V_{tb}| > 0.975 @95\%C.L.$

$$\frac{1}{\Gamma}\frac{d\Gamma}{d\cos\theta^*} = F_0 \cdot \frac{3}{4}(1-\cos^2\theta^*) + F_- \cdot \frac{3}{8}(1-\cos\theta^*)^2 + F_+ \cdot \frac{3}{8}(1+\cos\theta^*)^2 + F_- \cdot \frac{3}{8}(1+\cos\theta^*$$

 $(SM: F_0 = 0.69 \quad F_1 = 0.31 \quad F_+ \sim 0)$

- μ+jets channel
- Reconstruct top quark kinematics
- Fit to the cosθ* distribution
- Results are based on 19.6fb⁻¹

 $F_0 = 0.659 \pm 0.015(\text{stat.}) \pm 0.023(\text{syst.})$ $F_L = 0.350 \pm 0.010(\text{stat.}) \pm 0.024(\text{syst.})$ $From F_0 + F_L + F_R = 1:$ $F_R = -0.009 \pm 0.006(\text{stat.}) \pm 0.020(\text{syst.})$

Good agreement with SM-predictions!

Summary

Backup

Background estimation:

- Single top and diboson from MC simulation
- Drell-Yan: ratio of events outside/inside Z mass window from simulation is applied on data events in the Z mass window
- Non-prompt leptons (jets misidentified as leptons): estimated in a sideband region in data
- Dominant systematic uncertainties:
 - Jet energy scale: 5 10%
 - Lepton efficiencies: 4 6%
 - Factorization and renormalization scales: 6%
 - Drell-Yan estimation (only ee and μμ): 10%

A_c in Lepton+Jets @ 7TeV PAS-TOP-14-006

CHARGE SYMMETRY TLAS COMBINATION

Combination done within the TOPLHC working group

		ATLAS	CMS	Comb.	Corr.
	A_C	0.006	0.004	0.005	0.058
Jncertainties	Statistical	0.010	0.010	0.007	0
	Detector response model	0.004	0.007	0.004	0
	Signal model	< 0.001	0.002	0.001	1
	W+jets model	0.002	0.004	0.003	0.5
	QCD model	< 0.001	0.001	0.000	0
	Pileup+MET	0.002	< 0.001	0.001	0
	PDF	0.001	0.002	0.001	1
	MC statistics	0.002	0.002	0.001	0
	Model dependence				
	Specific physics models	< 0.001	*	0.000	0
	General simplified models	*	0.007	0.002	0
	Systematic uncertainty	0.005	0.011	0.006	
	Total uncertainty	0.011	0.015	0.009	

