Top Quark Mass Measurements in ATLAS

Stefanie Adomeit¹

¹Ludwig-Maximilians-Universität Munich

Top Quark Physics Day MIAPP Summer Institute, August 11, 2014

Top Quark Mass Measurements in ATLAS

This talk:

 $\ell + jets \ channel$

$$\sqrt{s} = 7$$
 TeV, L = 4.6 fb⁻¹:

- 3-d template: ATLAS-CONF-2013-046
- Δm_t: Physics Letters B 728 (2014)

dilepton channel

$$\sqrt{s} = 7$$
 TeV, L = 4.6 fb⁻¹:

 1-d template: ATLAS-CONF-2013-077

$$\sqrt{s} = 7/8$$
 TeV, L = 4.6/20.3 fb $^{-1}$:

• m_t from tt x-Section: arXiv:1406.5375

all-hadronic channel

$$\sqrt{s}=$$
 7 TeV, L = 2.04 fb⁻¹:

 1-d template: ATLAS-CONF-2012-030

Event Selection

ℓ+**jets channel***: [ATLAS-CONF-2013-046]

- single lepton trigger
- == 1 lepton, E_T^{miss}
- \geq 4 jets (p_T > 25 GeV)
- ullet \geq 1 *b*-tagged jets

dilepton channel*:

[ATLAS-CONF-2013-077]

- single lepton trigger
- == 2 opposite sign leptons, E_T^{miss}
- \geq 2 jets (p_T > 25 GeV)
- == 2 *b*-tagged jets

all-hadronic channel: [ATLAS-CONF-2012-030]

- multijet trigger
- == 0 leptons
- ≥ 6 jets ($p_T > 55/30$ GeV), $E_T^{miss} / \sqrt{H_T} [\text{GeV}^{-0.5}] < 3$
- == 2 *b*-tagged jets ($\Delta R_{b\bar{b}} > 1.2$)
- \Rightarrow select orthogonal datasets \leftrightarrow combination
- \Rightarrow *b*-tagging to increase signal purity (+ reduce combinatorial background
- $\leftrightarrow t\bar{t}$ reconstruction)

* excluding au's

Stefanie Adomeit (LMU Munich)

Top Quark Mass Measurement Techniques in ATLAS

- template method widely used in ATLAS observable sensitive to top quark mass:
 - typically relies on reconstruction of $t\bar{t}$ -decay $(m_{bjj}, m_{\ell b},..)$
 - parameterize observable as a function of m_t
 - (+ use further observables to constrain JES uncertainty,...)
 - perform likelihood fit to measure top quark mass in data

 $\Rightarrow m_t^{measured} = m_t^{MC}$ due to MC based mass calibration

• exploit top mass dependence of $\sigma_{t\bar{t}}$ \Rightarrow theoretical calculations use pole mass $\leftrightarrow m_t^{measured} = m_t^{pole}$

Stefanie Adomeit (LMU Munich)

Systematic Uncertainties: Monte-Carlo Modelling

Nominal: POWHEG + PYTHIA

- Generator:
 - $Powheg \leftrightarrow MC@NLO$
- Hadronisation:
 - $\operatorname{Pythia}\leftrightarrow\operatorname{Herwig}$
- ISR/FSR:

variation of Pythia parameters controlling the parton shower strength, constrained by Eur.Phys.J. C72 (2012) 2043

• Underlying Event:

 $\text{Perugia 2011} \leftrightarrow \text{Perugia 2011 mpiHi}$

• Colour Reconnection:

Perugia 2011 \leftrightarrow Perugia 2011 noCR

 \Rightarrow hadronisation and ISR/FSR typically among dominant sources of MC modelling uncertainties

 \Rightarrow sensitivity also depends on estimator/technique

Systematic Uncertainties: Detector Modelling

- uncertainties on (*b*)-jet energy scale typically dominant:
 - \bullet basline in-situ JES: 1-3% for jets with 20 $<\!p_{\rm T}\!<\!500$ GeV in the central region
 - additional uncertainty dependent on event topology (light quark/gluon jet composition), pile-up conditions
 - *b*-JES: 0.7-1.8%

```
\Rightarrow impact on m_{jjj}: 1-2 GeV (JES), 0.5-1 GeV (bJES)
```

```
\Rightarrow constrain JES uncertainty: simultaneous measurement of (b-)jet energy scale factor
```

• *b*-tagging: can impact estimators reconstructed based on *b*-tagging info

$tar{t} ightarrow \ell+ ext{jets: } \sqrt{s} = 7 \,\, ext{TeV}\,\,(ext{L}=4.6\,\, ext{fb}^{-1})$

3d Template Method (ATLAS-CONF-2013-046):

 \Rightarrow simultaneous determination of \mathbf{m}_t and global jet energy scale factor (**JSF**) / *b*-jet scale factor (**bJSF**)

 $m_t^{\mathrm{reco}} \leftrightarrow m_t$

 $m_W^{
m reco} \leftrightarrow {\sf JSF}$

$$\left. \begin{array}{l} \mathcal{R}_{\mathrm{lb}}^{\mathrm{reco,1b}} = \frac{\rho_{\mathrm{T}}^{b_{\mathrm{tag}}}}{(\rho_{\mathrm{T}}^{}+\rho_{\mathrm{T}}^{}-W_{\mathrm{jet_2}})/2} \\ \mathcal{R}_{\mathrm{lb}}^{\mathrm{reco,2b}} = \frac{\rho_{\mathrm{T}}^{b_{\mathrm{had}}}+\rho_{\mathrm{T}}^{}-b_{\mathrm{lep}}}{\rho_{\mathrm{T}}^{}+\rho_{\mathrm{T}}^{}-W_{\mathrm{jet_2}}} \end{array} \right\} \leftrightarrow \mathrm{bJSF}$$

kinematic likelihood fit to assign jets to the W boson $(W_{\text{jet}_{1/2}})$ and *b*-quarks $(b_{\text{had/lep}})$

$t\overline{t} ightarrow \ell+$ jets: $\sqrt{s} = 7$ TeV (L = 4.6 fb⁻¹)

ATLAS-CONF-2013-046

- *b*-tag efficiency, JES and I/FSR dominant sources of systematic uncertainty
- bJES unc. reduced thanks to $R_{\rm lb}^{\rm reco}$ variable (\leftrightarrow 2d analysis: 0.92 GeV)

Method calibration	0.13
Signal MC generator	0.19
Hadronisation	0.27
Underlying event	0.12
Colour reconnection	0.32
ISR and FSR (signal only)	0.45
Proton PDF	0.17
single top normalisation	0.00
W+jets background	0.03
QCD multijet background	0.10
Jet energy scale	0.79
<i>b</i> -jet energy scale	0.08
Jet energy resolution	0.22
Jet reconstruction efficiency	0.05
b-tag efficiency and mistag rate	0.81
Lepton energy scale	0.04
Missing transverse momentum	0.03
Pile-up	0.03

 $\begin{array}{l} m_t = 172.31 \pm 0.23 \; ({\rm stat}) \pm 0.27 \; ({\rm JSF}) \pm 0.67 \; ({\rm bJSF}) \pm 1.35 \; ({\rm syst}) \; {\rm GeV} \\ m_t = 172.31 \pm 0.75 \; ({\rm stat+JSF+bJSF}) \pm 1.35 \; ({\rm syst}) \; {\rm GeV} \end{array}$

$t\overline{t} ightarrow \ell\ell$: $\sqrt{s} = 7$ TeV (L = 4.6 fb⁻¹)

- 1-d template method
- m_{lb} estimator: average invariant mass of lepton + b-jet system (choose permutation which gives lowest average m_{lb})
- dominant sources of systematic uncertainty:

Hadronisation	0.44
Underlying event	0.42
Colour reconnection	0.29
ISR/FSR	0.37
Jet energy scale	0.89
bjet energy scale	0.71
<i>b</i> -tag efficiency and mistag rate	0.46

$$m_t = 173.09 \pm 0.64 \; ({
m stat}) \pm 1.50 \; ({
m syst}) \; {
m GeV}$$

ATLAS-CONF-2013-077

Stefanie Adomeit (LMU Munich)

August 11, 2014 9 / 16

 $tar{t}
ightarrow$ jets: $\sqrt{s} = 7$ TeV (L = 2.04 fb⁻¹)

- 1-d template method
- m_{jjb} estimator: $t\bar{t}$ reconstruction via χ^2 -fit
- multijet background from data via event mixing
- dominant sources of systematic uncertainty:

ISR/FSR	1.7
Jet energy scale	2.1
bjet energy scale	1.4
Background modelling	1.9

$$m_t = 174.9 \pm 2.1 \; ({
m stat}) \pm 3.8 \; ({
m syst}) \; {
m GeV}$$

ATLAS-CONF-2012-030

m_t World Combination

ATLAS-CONF-2014-008, CDF Note 11071, CMS PAS TOP-13-014, D0 Note 6416

 \Rightarrow first combination of LHC and Tevatron results, 0.43% overall precision

Stefanie Adomeit (LMU Munich)

m_t from $t\bar{t}$ x-Section: $\sqrt{s} = 7/8$ TeV (L = 4.6/20.3 fb⁻¹)

ross-section

exploit theoretical dependence of $\sigma_{t\bar{t}}$ on m_t^{pole} \Rightarrow well defined renormalization scheme

- using opposite sign $e\mu$ events \overline{a}
- small exp. dependence on m_t
- m_t^{pole} extracted via likelihood maximization

Theoretical uncertainties:

- including PDF / α_s / QCD scales uncertainties
- slightly larger compared to exp. uncertainties from $\sigma_{t\bar{t}}$ measurement
- \rightarrow see talk by L. Mijovic

$$m_t^{
m pole} = 174.1 \pm 2.6 \, {
m GeV} \, (\sqrt{s} = 8 \, {
m TeV})$$

$$m_t^{
m pole} = 172.9^{+2.5}_{-2.6}\,{
m GeV}\,(\sqrt{s} = 7/8\,{
m TeV})$$

arXiv:1406.5375

Δm_t : $\sqrt{s} = 7$ TeV (L = 4.6 fb⁻¹)

- check for equal particle and anti-particle masses in ℓ+jets events ↔ CPT invariance
- estimator:

 $\Delta m_t = q_\ell \times (m_{b\ell\nu}^{\rm fit} - m_{bjj}^{\rm fit})$ $m_{b\ell\nu}^{\rm fit}$, $m_{bjj}^{\rm fit}$: masses from kinematic fit

 q_ℓ : lepton charge

 systematic uncertainty dominated by b/b⁻ decay uncertainties (0.34 GeV)

 $\Delta m_t = 0.67 \pm 0.61$ (stat) ± 0.41 (syst) GeV

Physics Letters B 728 (2014)

Summary of ATLAS Top Quark Mass Measurements

• latest m_t measurements performed in different $t\bar{t}$ decay channels $(\sqrt{s}=7 \text{ TeV})$:

• m_t^{pole} extraction from $\sigma_{t\bar{t}}$ ($\sqrt{s} = 7/8 \text{ TeV}$): $m_t^{\text{pole}} = 172.9^{+2.5}_{-2.6} \text{ GeV}$ (arXiv:1406.5375)

• check for CPT invariance:

 $\Delta m_t = 0.67 \pm 0.61$ (stat) ± 0.41 (syst) GeV (Physics Letters B 728 (2014))

Backup Slides...

ATLAS Top Quark Mass Measurements

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CombinedSummaryPlots/TOP