Top quark mass measurements

with the CMS detector at the LHC

...

Pedro Silva (CERN) on behalf of the CMS Collaboration

Top Quark Physics Day MIAPP Summer 2014 Institute program

Miro, Bleu II, 1961

the European Physical Journal Compared by European Physical Society An exe nave completed the mass measurements programme using 7 TeV data ...

Ω

Experimental status overview

Top mass is accurately measured

- → 0.4% total uncertaninty on m_{top}
- mostly from invariant mass-based methods
- intrinsic calibration to a MC-based reference
- consistent measurements across colliders

The case for CMS results

- most precise measurements in almost every channel
- ~ 0.4% systematics + 0.05% statistical uncertainty

Top quark mass measurements

Experimental status overview

- Top mass is accurately measured
 - → 0.4% total uncertaninty on m_{top}
 - mostly from invariant mass-based methods
 - intrinsic calibration to a MC-based reference

- The case for CMS
 - most precise measurements in almost every channel

7/30

~ 0.4% systematics + 0.05% statistical uncertainty

"Classic" measurements

- Although mostly produced from QCD the top quark evolution is dictated by EWK processes
 - $\Gamma_t = 1.4 \text{ GeV} >> \Lambda_{OCD}$: it decays before hadronizing mostly in the Wb channel
 - → Γ_w =2.5 GeV >> $\Lambda_{_{QCD}}$: the W decays before b-hadronization time scale
 - use final state products to reconstruct mass of initial particle
- Different techniques used depending on the final state

- Fully reconstructable
- Fit kinematics of 6 permutations

- Up to 2 solutions for $p_z(V)$
- Fit kinematics of 2 permutations
- Can fit jet energy scale in-situ by imposing m_{ii}=m_w

- Up to 2x4 solutions / event
- Alternatively use partial kinematics e.g. b-l system
- No b-JES fit in-situ

• \geq 6 high-p_T jets, \geq 2 b-tags and $\Delta R_{bb} > 1.5$

CMS PAS-TOP-14-002

- Use permutation with best χ^2 and $P_{gof}(\chi^2) > 0.09$, after kinematics fit
- Background is modeled with an event mixing technique
- Use reconstructed W mass peak to constraint JES in-situ
- Parametrize m_T and m_W for different permutations and JES hypothesis

9/30

10/30

• 72% signal events with 45% correct permutations are expected after selection

Measurement using I+jets

11/30

After fit, P_{oof}>0.2,

and weight

96

44

21

35

- =1 isolated lepton, ≥4 jets, ≥2 b-tags
- Similar approach to the one used in all jets:
 - → perform kinematics fit and require $P_{gof}(\chi^2) > 0.2$ ►
 - apply an ideogram method after parametrizing m_r for different permutations

Permutations

Purity

Correct

Wrong

Un-matched

Before fit

94

13

16

71

We have now a better understanding with respect to the 7 TeV analyses

Channel	l+	-jets	All jets		
Channel	$\delta m_{\rm t}~({ m GeV})$	δJSF	$\delta m_{\rm t}~({ m GeV})$	δJSF	
Exper	imental uno	ertainties			
Fit calibration	0.10	0.001	0.06	<0.001	
$p_{\rm T}$ - and η -dependent JES	0.18	0.007	0.28	0.006	
Lepton energy scale	0.03	<0.001			
Missing transverse energy	0.09	0.001			
Jet energy resolution	0.26	0.004	0.10	<0.001	
b-tagging	0.02	<0.001	0.02	<0.001	
Pileup	0.27	0.005	0.31	0.001	
Trigger			0.18	0.003	
Background	0.11	0.001	0.22	0.002	
Ha	dronization	model			
Flavor-dependent JSF	0.41	0.004	0.36	0.004	
b-fragmentation	0.06	0.001	0.07	0.001	
Semi-leptomic B hadron decays	0.16	<0.001	0.12	<0.001	
Hard sc	attering pro	ocess model			
PDF	0.09	0.001	0.02	<0.001	
Renormalization/factorization scales	0.12±0.13	0.004 ± 0.001	0.19±0.19	0.004 ± 0.002	
ME-PS matching threshold	0.15±0.13	0.003 ± 0.001	0.20±0.19	0.002 ± 0.002	
ME generator	0.23±0.14	0.003 ± 0.001	0.09±0.21	0.003 ± 0.002	
Non-pe	rturbative (QCD model			
Underlying event	0.14±0.17	0.002 ± 0.002	0.13±0.28	0.000 ± 0.002	
Colour reconnection	0.08 ± 0.15	0.002 ± 0.001	0.00 ± 0.25	0.000 ± 0.002	
Total	0.75	0.012	0.83	0.011	

Similar treatment as for 7 TeV but larger statistics (data + MC) help refining syst. assessments

13/30

We have now a better understanding with respect to the 7 TeV analyses

(here a)	l+	-jets	All jets					
Channel	$\delta m_{\rm t}$ (GeV)	δJSF	$\delta m_{\rm t} ~({\rm GeV})$	δJSF				
Exper	imental uno	ertainties	· · ·					
Fit calibration	0.10	0.001	0.06	<0.001				
$p_{\rm T}$ - and η -dependent JES	0.18	0.007	0.28	0.006				
Lepton energy scale	0.03	<0.001						
Missing transverse energy	0.09	0.001						
Jet energy resolution	0.26	0.004	0.10	<0.001				
b-tagging	0.02	<0.001	0.02	<0.001				
Pileup	0.27	0.005	0.31	0.001				
Trigger			0.18	0.003				
Background	0.11	0.001	0.22	0.002				
Hadronization model								
Flavor-dependent JSF	0.41	0.004	0.36	0.004				
b-fragmentation	0.06	0.001	0.07	0.001				
Semi-leptomic B hadron decays	0.16	<0.001	0.12	<0.001				
Hard sc	attering pro	ocess model						
PDF	0.09	0.001	0.02	<0.001				
Renormalization/factorization scales	0.12±0.13	0.004 ± 0.001	0.19±0.19	0.004 ± 0.002				
ME-PS matching threshold	0.15±0.13	0.003 ± 0.001	0.20±0.19	0.002 ± 0.002				
ME generator	0.23±0.14	0.003 ± 0.001	0.09±0.21	0.003 ± 0.002				
Non-pe	rturbative (QCD model						
Underlying event	0.14 ± 0.17	0.002 ± 0.002	0.13±0.28	0.000 ± 0.002				
Colour reconnection	0.08 ± 0.15	0.002 ± 0.001	0.00 ± 0.25	0.000 ± 0.002				
Total	0.75	0.012	0.83	0.011				

- Similar treatment as for 7 TeV but larger statistics (data + MC) help refining syst. assessments
- JES uncertainty component due to pileup + $\Delta \sigma_{min.bias}$

We have now a better understanding with respect to the 7 TeV analyses

(harred	l+	-jets	All jets					
Channel	$\delta m_{\rm t} ~({\rm GeV})$	δJSF	$\delta m_{\rm t}~({ m GeV})$	δJSF				
Exper	imental uno	ertainties						
Fit calibration	0.10	0.001	0.06	<0.001				
$p_{\rm T}$ - and η -dependent JES	0.18	0.007	0.28	0.006				
Lepton energy scale	0.03	<0.001						
Missing transverse energy	0.09	0.001						
Jet energy resolution	0.26	0.004	0.10	<0.001				
b-tagging	0.02	<0.001	0.02	<0.001				
Pileup	0.27	0.005	0.31	0.001				
Trigger			0.18	0.003				
Background	0.11	0.001	0.22	0.002				
Hadronization model								
Flavor-dependent JSF	0.41	0.004	0.36	0.004				
b-fragmentation	0.06	0.001	0.07	0.001				
Semi-leptomic B hadron decays	0.16	<0.001	0.12	<0.001				
Hard sc	attering pro	ocess model						
PDF	0.09	0.001	0.02	<0.001				
Renormalization/factorization scales	0.12±0.13	0.004 ± 0.001	0.19±0.19	0.004 ± 0.002				
ME-PS matching threshold	0.15±0.13	0.003 ± 0.001	0.20±0.19	0.002 ± 0.002				
ME generator	0.23±0.14	0.003 ± 0.001	0.09±0.21	0.003 ± 0.002				
Non-pe	rturbative (QCD model						
Underlying event	0.14±0.17	0.002 ± 0.002	0.13 ± 0.28	0.000 ± 0.002				
Colour reconnection	0.08 ± 0.15	0.002 ± 0.001	0.00 ± 0.25	0.000 ± 0.002				
Total	0.75	0.012	0.83	0.011				

- Similar treatment as for 7 TeV
 but larger statistics (data + MC)
 help refining syst. assessments
- JES uncertainty component due to pileup + $\Delta \sigma_{min.bias}$

Signal modelling is added Madgraph vs Powheg +

modeling of top p_T estimated after re-weigthing simulation to observed top p_T

We have now a better understanding with respect to the 7 TeV analyses

(harral	l+	-jets	All jets				
Channel	$\delta m_{\rm t} ~({ m GeV})$	δJSF	$\delta m_{\rm t} ({\rm GeV})$	δJSF			
Exper	imental uno	ertainties	.				
Fit calibration	0.06	<0.001					
$p_{\rm T}$ - and η -dependent JES	0.18	0.007	0.28	0.006			
Lepton energy scale	0.03	<0.001					
Missing transverse energy	0.09	0.001					
Jet energy resolution	0.26	0.004	0.10	<0.001			
b-tagging	0.02	<0.001	0.02	<0.001			
Pileup	0.27	0.005	0.31	0.001			
Trigger			0.18	0.003			
Background	0.11	0.001	0.22	0.002			
Hadronization model							
Flavor-dependent JSF	0.41	0.004	0.36	0.004			
b-fragmentation	0.06	0.001	0.07	0.001			
Semi-leptomic B hadron decays	0.16	<0.001	0.12	<0.001			
Hard sc	attering pro	ocess model					
PDF	0.09	0.001	0.02	<0.001			
Renormalization/factorization scales	0.12±0.13	0.004 ± 0.001	0.19±0.19	0.004 ± 0.002			
ME-PS matching threshold	0.15±0.13	0.003 ± 0.001	0.20±0.19	0.002 ± 0.002			
ME generator	0.23±0.14	0.003 ± 0.001	0.09±0.21	0.003 ± 0.002			
Non-pe	rturbative (QCD model					
Underlying event	0.14±0.17	0.002 ± 0.002	0.13±0.28	0.000 ± 0.002			
Colour reconnection	0.08 ± 0.15	0.002 ± 0.001	0.00 ± 0.25	0.000 ± 0.002			
Total	0.75	0.012	0.83	0.011			

- Similar treatment as for 7 TeV
 but larger statistics (data + MC)
 help refining syst. assessments
- JES uncertainty component due to pileup + $\Delta \sigma_{min.bias}$
- Signal modelling is added

Madgraph vs Powheg + modeling of top p_T estimated after re-weigthing simulation to observed top p_T

Hadronization is the dominant uncertainty

Pythia-based JES extrapolation: from calibrated jet flavour to other flavours

Pythia vs Herwig differences are evaluated separately for light, gluon and b-jets

b-fragmentation: default vs LEP Semi-leptonic B rates: from PDG

We have now a better understanding with respect to the 7 TeV analyses

Channel	ℓ+je		All jets		
	$\delta m_{ m t}$ (GeV)				
	xperimental unce				
	0.10	0.001		< 0.001	
	0.18	0.007			
		< 0.001			
		0.001			
			0.10	<0.001	
		< 0.001		<0.001	
	0.07	0.005	0.01	0.001	

- Similar treatment as for 7 TeV but larger statistics (data + MC) help refining syst. assessments
- JES uncertainty component due to pileup + Δσ_{min.bias}
- Signal modelling is added
 Madgraph vs Powheg +

• Consistency cross-check of our current assessment of the hadronization uncertainty

String vs cluster fragmentation in Sherpa : parton-to-particle out-of-cone effects negligible in tt events Pythia vs Herwig (with Powheg) in top pair events: consistent effects with main estimate

			0.02	< 0.001
	0.12 ± 0.13	0.004 ± 0.001	0.19 ± 0.19	
	0.15 ± 0.13	0.003 ± 0.001	0.20 ± 0.19	
	$0.23{\pm}0.14$	0.003 ± 0.001	0.09 ± 0.21	
Non-pe				
	0.14 ± 0.17			
	0.08 ± 0.15	0.002 ± 0.001		
	0.75	0.012	0.83	0.011

from calibrated jet flavour to other flavours

Pythia vs Herwig differences are evaluated separately for light, gluon and b-jets

b-fragmentation: default vs LEP Semi-leptonic B rates: from PDG

m, differential measurements

17/30

- We rely on MC-based models of the top production and decay chain
 - particular models for underlying event (UE), colour reconnection (CR) are taken into account
 - do these tools describe our data in the different phase space regions?
 - is our assessment of systematic uncertainties mined by casual cancellations?
 - can we find sensitivity to different components in top quark p_{τ} , b-quark rapidity, charge, etc. ?
- Choose representative observables which can potentiate particular effects

CMS-PAS-TOP-12-029 (7 TeV), CMS-PAS-TOP-14-001 (8 TeV) Strategy for differential measurements 18/30

- Study performed using golden I+jet channel
 - Categorize permutations according to kinematics
 - → Fit (m, JES) in data and MC ensembles
 - Compare expected and observed biases (double differences)

21/30

The top mass observable is used as a probe of the top quark event anatomy

- **No significant deviation** is found with respect to nominal calibration (Madgraph+Pythia6 Z2*)
- The extracted top mass is stable in all corners of phase space and for all models considered

Effect	Obsommble	$ $ $m_{\rm t}^{11}$	$\gamma \chi^2$	JES χ^2		$m_{ m t}^{ m 2D}~\chi^2$		ndof
	Observable	7 TeV	8 TeV	7 TeV	8 TeV	7 TeV	8 TeV	nuor
Colour reconnection	$\Delta R_{q\bar{q}}$	1.01	2.87	3.41	3.66	1.49	0.83	3
	$\Delta \phi_{q \bar{q}}$	2.31	-	2.18	-	2.89	-	3
	$p_{\mathrm{T,t,had}}$	9.40	0.89	7.83	12.03	2.89	5.76	4
	$ \eta_{\mathrm{T,t,had}} $	0.41	5.56	3.33	1.22	3.17	1.14	3
	H_{T}	3.18	6.19	1.19	9.18	2.24	7.54	4
Dediction officets	$m_{tar{t}}$	2.52	2.16	2.98	4.69	2.25	3.22	4/5
Radiation elects	$p_{\mathrm{T,t\bar{t}}}$	3.39	1.02	1.67	1.22	2.18	1.33	4
	Jet mult.	1.47	4.24	2.00	0.10	1.56	1.16	2
	$p_{\mathrm{T,b,had}}$	0.81	2.57	2.35	5.80	2.17	2.17	4
h quark kinomatica	$\eta_{\mathrm{T,b,had}}$	2.64	1.15	0.30	0.08	0.48	0.72	2
D-quark kinematics	$\Delta R_{bar{b}}$	4.87	0.37	2.61	1.63	8.01	1.77	3
	$\Delta \phi_{bar{b}}$	2.87	-	3.86	-	6.86	-	3
	$p_{\mathrm{T,q,had}}$	-	4.04	-	8.39	-	1.28	4
"FWK" kinematica	$\eta_{\mathrm{T,W,had}}$	-	3.36	-	3.79	-	6.27	2
"EWK" kinematics	$p_{\mathrm{T,q,had}}$	-	1.59	-	8.06	-	1.60	4
	$\eta_{\mathrm{T,W,had}}$	-	1.41	-	1.09	-	1.35	3
$\sqrt{2}/ndof$			68.68/	/78 (p	-val=0.7	77) at 7	TeV	
			93.67	/94 (p-val=0.49) at 8 TeV				

22/30

The top mass observable is used as a probe of the top quark event anatomy

- **No significant deviation** is found with respect to nominal calibration (Madgraph+Pythia6 Z2*)
- The extracted top mass is stable in all corners of phase space and for all models considered

Effect	Observable	$m_{ m t}^{ m 1D}$ 7 TeV	χ^2 8 TeV	JES 7 TeV	δ χ ² 8 TeV	$m_{ m t}^{ m 2D}$ 7 TeV	γ ² 8 TeV	ndof
	$\Delta R_{qar{q}}$	1.01	2.87	3.41	3.66	1.49	0.83	3

- With more statistics (i.e. LHC Run II and beyond)
 - establish robustness of top mass result in more detail and with better precision
 - tune models in-situ using data or simply exclude extreme models
 - use method to compare "our" favorite MC tool to well-defined QCD calculations (cf. arXiv:1405.4781)

D-quark kinematics	$\Delta R_{bar{b}}$	4.87	0.37	2.61	1.63	8.01	1.77	3	
	$\Delta \phi_{bar{b}}$	2.87	-	3.86	-	6.86	-	3	
	$p_{\mathrm{T,q,had}}$	-	4.04	-	8.39	-	1.28	4	
"EWK" kinematics $\eta_{T,W,has}$ $p_{T,q,has}$ $\eta_{T,W,has}$	$ \eta_{\mathrm{T,W,had}} $	-	3.36	-	3.79	-	6.27	2	
	$p_{\mathrm{T,q,had}}$	-	1.59	-	8.06	-	1.60	4	
	$\eta_{\mathrm{T,W,had}}$	-	1.41	-	1.09	-	1.35	3	
$v^2/ndof$			68.68/	′78 (p-	-val=0.7	7) at 7	TeV		
<i>χ</i> -/ ndo ι		93.67/94 (p-val=0.49) at 8 TeV							

Testing our modelling of the signal

23/30

• Non-perturbative QCD effects

- can be measured in-situ from UE studies
- compare different models: identify extreme cases
- e.g. the data/MC ratio of the average p_{τ} / particle
 - characterize as function of $p_{T}(tt), \Delta \phi(tt)$
 - Provides evidence of CR in tt events!

CMS PAS-TOP-13-007

Testing our modelling of the signal

Non-perturbative QCD effects

- can be measured in-situ from UE studies
- compare different models: identify extreme cases
- e.g. the data/MC ratio of the average p_{τ} / particle
 - characterize as function of $p_{\tau}(tt), \Delta \phi(tt)$
 - Provides evidence of CR in tt events!

ISR/FSR effects

modelled from $\mu_{\rm p}/\mu_{\rm r}$ and ME-PS matching

24/30

CMS

- measure differential cross-section:
 - N_{iars} , H_{T} , gap fractions, ...

e.g. extra jet multiplicity as function of $\Delta \eta(b,b')$

Where can we further improve?

Alternative methods

Reduce specific systematics using robust observables: typically require high statistics

B-hadron lifetime technique

- $m_{top} = 173.5 \pm 1.5 \text{ (stat)} \pm 1.3 \text{ (syst)} \pm 2.6 \text{ (p}_{T(t)}) \text{ GeV}$
 - Pioneered by CDF
 - No JES uncertainty
 - Sensitive to fragmentation and top p_T
 - would benefit from theory developments

Alternative methods

B-hadron lifetime technique

- $m_{top} = 173.5 \pm 1.5 \text{ (stat)} \pm 1.3 \text{ (syst)} \pm 2.6 \text{ (p}_{T(t)}) \text{ GeV}$
 - Pioneered by CDF
 - No JES uncertainty
 - Sensitive to fragmentation and top p_T
 - would benefit from theory developments

J/ψ method

• first observation of J/ψ production in tt events!

26/30

- preliminary fragmentation/hadronization studies
- in the future: use M(J/ ψ ,I) to reconstruct m_t

Where can we further improve? **Resolving the ambiguity in interpreting m**_t^{exp.}

27/30

- Explore **endpoint** for the spectrum of variables which:
 - are suited to analyze events with symmetric 3 body decays
 - factorize event-by-event boost of the tt system
- Use M(I,b) and M_{T2}-variants
 JHEP 0903 (2009) 143 PRL 107 (2011) 061801
- Compare directly with LO expectations

 $m_{top} = 173.9 \pm 0.9 \text{ (stat)} + 1.7/-2.1 \text{ (syst)} \text{ GeV}$

main uncertainties: jet energy scale, QCD effects and fit choices

Where can we further improve? Resolving the ambiguity in interpreting m^{exp.}

28/30

- Explore **endpoint** for the spectrum of variables which:
 - are suited to analyze events with symmetric 3 body decays
 - factorize event-by-event boost of the tt system
- Use M(I,b) and M_{T2}-variants
 JHEP 0903 (2009) 143 PRL 107 (2011) 061801
- Compare directly with LO expectations

 $m_{top} = 173.9 \pm 0.9 \text{ (stat)} + 1.7/-2.1 \text{ (syst)} \text{ GeV}$

main uncertainties: jet energy scale, QCD effects and fit choices

PLB 728 (2013) 496

Extrapolate m₁^{pole} from cross section

- Needs careful choice of cuts for cross section measurement
 - minimize acc. dependency on m_{τ} and signal model systematics
- First NNLO+NNLL determination of m_T^{pole}

 $m_{top} = 176.7 + 3.0 / -2.8 \text{ GeV}$ using NNPDF2.3

- $\boldsymbol{\alpha}_{s}$ determination is also possible after fixing $m_{t}^{\text{ pole}}$
- In both cases compare with different PDF predictions

CMS PAS-FTR-13-017 Top mass @ CMS: quo vadis?

Projections made as a roadmap towards HL-LHC based on flagship measurements @ the LHC

29/30

- improved fitting techniques. dedicated signal modeling studies
- to be accompanied with improvements from theory

- Rich m_{top} measurement programme at CMS
 - fundamental SM parameter and window to new physics
 - 7 TeV programme fully published, moving to full 8 TeV dataset
- "Classic" mass measurements adopt the MC definition of m_{top}
 - $\Rightarrow \sigma = 0.4\% \text{ m}_{_{top}} \sim 4 \Lambda_{_{QCD}}!$
 - inclusive phase-space calibration is performed
 - robustness tested against different theory models and experimental uncertainties
- Data can be used to image in finer detail a top quark event
 - <u>differential measurements</u> do not reveal significant biases for different variables
 - <u>UE studies</u> show that a colour reconnection model is needed to describe top pair events in data
- Alternative methods can further help:
 - robust against specific systematics
 - clarify interpretation of classic measurements
- Higher statistics is crucial: expect great benefits from 300 fb⁻¹ and 3000 fb⁻¹

Ultimate experimental precision 200 MeV ~ Λ_{ocd} may be possible

Backup

- Data/MC ratio of the average p_{τ} per charged particle
 - Compare ratio with two Perugial I variations: with and without colour reconnection

39/30

- Evolve comparison as function of the number of extra jets in the event

