
INSTITUT FÜR EXPERIMENTELLE KERNPHYSIK (IEKP)

Improvements on the basf2 validation module
Previous State – Current Developments – Future Ideas

Dr. Thomas Kuhr, Timothy Gebhard | May 12, 2014

KIT – University of the State of Baden-Wuerttemberg and

National Laboratory of the Helmholtz Association

www.kit.edu

http://www.kit.edu

Previous State

Previous state Current Development Future Ideas

Dr. Thomas Kuhr, Timothy Gebhard – Improvements on the basf2 validation module May 12, 2014 2/14

Processing of the scripts

Previous state: Scripts are processed serially, i.e. one script at a time
Obvious problems:

Slow (complete validation takes 15+ hours!)
Waste of computing ressources← Multi-core machines are standard,
but only one core is used!

Obvious solution: Parallelization!

Either on a cluster or through multi-core machines

Main requirement: Independent tasks
This is fulfilled in a twofold way:

All packages are independent and can be validated parallely
There are tasks within a package that are independent, i.e. several
steering files generating data (like in the tracking-package)

Previous state Current Development Future Ideas

Dr. Thomas Kuhr, Timothy Gebhard – Improvements on the basf2 validation module May 12, 2014 3/14

Dependencies between scripts

There are certain dependencies between the scripts, e.g. a plotting
script can’t be executed before a data creation script

Previous state: Dependencies are not explicitly stated, scripts are
simply executed in alphabetical order
Problems:

Knowledge of the dependencies is crucial for parallel execution!
Adding scripts at a later point of time may be cumbersome

Example: You have 10 files with names 01 script, · · · , 10 script,
and you want to squeeze in a file that is executed after the 5th, but
before the 6th script. ⇒ If you want your file names to stay consistent,
you will have to rename 5 of your files!

Solution: Explicitly state the dependencies between the files!

Previous state Current Development Future Ideas

Dr. Thomas Kuhr, Timothy Gebhard – Improvements on the basf2 validation module May 12, 2014 4/14

Display of results

Previous state Current Development Future Ideas

Dr. Thomas Kuhr, Timothy Gebhard – Improvements on the basf2 validation module May 12, 2014 5/14

Display of results

Previous state: Rather rudimentary display of the validation results
Little options to filter the results
No option to search for e.g. failed scripts etc.
Occasional problems with scaling, when plots of different basf2
versions lie within different ordners of magnitude
Website with results is generated directly by the
validate basf2-script

Aims for the new version:
Improved layout (no frames?)
Logging functionality, which makes it easier to track down failed scripts
Separation of content and layout
Possibility to generate a PDF with all results?
Dynamically choose which versions are displayed?

Previous state Current Development Future Ideas

Dr. Thomas Kuhr, Timothy Gebhard – Improvements on the basf2 validation module May 12, 2014 6/14

Current Development

Previous state Current Development Future Ideas

Dr. Thomas Kuhr, Timothy Gebhard – Improvements on the basf2 validation module May 12, 2014 7/14

Overview about the current development

Complete rewrite of the validate basf2-script has begun
Usage of the Object-Orientend Paradigm (OOP) instead of
Procedural Paradigm:

Each script is now an object the class Script
Control of cluster/multi-processing outsourced into external classes

Dependencies are represented by headers in the steering files
Current state of development: The new version of the script can

read in a directory
collect all steering files in there
read out the dependencies from the file header
execute the scripts parallely, either on a cluster or locally by spawning
new processes for each script

Performance gain for validation of the tracking-module: About 70%

Previous state Current Development Future Ideas

Dr. Thomas Kuhr, Timothy Gebhard – Improvements on the basf2 validation module May 12, 2014 8/14

Header Information

As mentioned above, it is useful to explicitly state the dependencies
between the steering files
There are two major ways of realizing that:

One file that holds all dependency information for a module (similar to
a makefile)
Provide each steering file with a header which contains the
dependencies of that script

We chose the latter option, because this allows to easily store a
variety of meta-information about the script, such as

the dependencies of the steering file
the files generated by the steering file (useful to check if script was
executed properly)
the author/a contact person for the script
· · ·

Previous state Current Development Future Ideas

Dr. Thomas Kuhr, Timothy Gebhard – Improvements on the basf2 validation module May 12, 2014 9/14

The file headers

Meta-information are given by keywords in the file header, which is
parsed by the validate basf2-script:

@StartHeader (this is technically just decoration)

#

$AUTHOR = John Doe

$DATE = 2014-05-12

$DEPENDENCIES = some_steering_file.py, another_file.py

$OUTPUT = some_data_file.root

#

@EndHeader

As of now, there are four keywords: $AUTHOR, $DATE,
$DEPENDENCIES, $OUTPUT→What else would be useful?

How to deal with modules that do not (yet) have file headers?

Previous state Current Development Future Ideas

Dr. Thomas Kuhr, Timothy Gebhard – Improvements on the basf2 validation module May 12, 2014 10/14

About the parallelization

Multi-processing parallelization is realized via Python’s
subprocess-module

Allows to spawn a new process for each script, avoiding the Python
Global Interpreter Lock (GIL)

Parallel execution on a cluster dependes heavily on the specific
cluster infrastructure⇒ External class which provides the controls,
and needs to be written anew for every new cluster

Default option will be multi-processing parallelization

As for the parallelization algorithm, several approaches have been
considered

Previous state Current Development Future Ideas

Dr. Thomas Kuhr, Timothy Gebhard – Improvements on the basf2 validation module May 12, 2014 11/14

The parallelization algorithm

Currently, we use some kind of “heartbeat algorithm”:
Every second, there is a “heartbeat”-signal
This signal calls a functions, which loops over all Script-objects, i.e.
all steering files
It checks if all other scripts on which a script depends have been
executed already
If so, the script is executed
If a script is flagged as running already, it checks whether execution
has finished
If so, the corresponding settled dependencies-lists are updated

This approach was chosen because it
is reasonably fast (little idle-times)
is thread-safe (only one process accessing a Script-object at a time!)
gives reasonably well-defined states of the program (debugging!)

Previous state Current Development Future Ideas

Dr. Thomas Kuhr, Timothy Gebhard – Improvements on the basf2 validation module May 12, 2014 12/14

Future Ideas

Previous state Current Development Future Ideas

Dr. Thomas Kuhr, Timothy Gebhard – Improvements on the basf2 validation module May 12, 2014 13/14

Future Ideas/To-Do-List

Dividing the steering files in three levels:
Plotting→ Fast, no parallelization necessary
Production→ Generation of data files, parallelized
Release→ Generation of high statistics data files, very big data
amounts, only executed once a month

Display of failed scripts

Contact adress for plots

Expert plots (expert directory in root file)

Selection of plots and versions on the web interface

ROOT JavaScript Interface on the web interface?

More ideas are very welcome!

Previous state Current Development Future Ideas

Dr. Thomas Kuhr, Timothy Gebhard – Improvements on the basf2 validation module May 12, 2014 14/14

	Previous state
	Processing of the scripts
	Dependencies between scripts
	Display of results

	Current Development
	Overview about the current development
	Header Information

	Future Ideas
	Future Ideas/To-Do-List

