
A local tracking algorithm for the Central Drift Chamber of Belle II.

F2F Meeting - Pisa

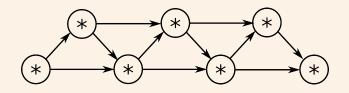
Oliver Frost Deutsches Elektronen-Synchrotron 12th May 2014

> Weighted Cellular Automaton \leftrightarrow Kalman Filter

> Optimization in the segment combination stage

> Plans

> Weighted Cellular Automaton \leftrightarrow Kalman Filter


Variables

- θ_i := suspected positions = initial state in combinations of observations (cell)
- $> w_{ij} :=$ suspected transitions = propagational weight (edges)
- E_i := final states to be generated

Various possible interpretations!

Graph diagramm

Variables

- > $\theta_i :=$ goodness of fit / number of hits
- > $w_{ij} :=$ compatibility / overlap penalty
- > $E_i :=$ accumulated goodness of fit / number of hits until this point

Update rule

State updated like

$$E_j = \max_{ ext{neighbor } j} (heta_j + w_{ij} + E_i)$$

where E_i , θ_j and w_{ij} are real numbers.

- Accumulates goods of fit
- Track parameters are not propagated
- > Applied only once per cell (loop free condition)
- Chain of high state cells make up the largest track.
- > Apply multiple times for more tracks from the graph.

Generalized update rule

- > E_i , θ_j and w_{ij} can be choosen more complex
- max and + can be choosen accordingly

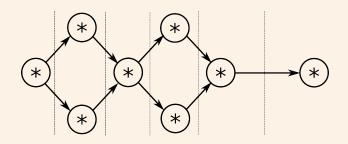
 $E_j = \text{vote}_{\text{neighbor } i}(\text{update}(\theta_j, \text{propagate}(w_{ij}, E_i)))$

- > Iterate until stablization is reached.
- > Possibly with multipass or annealing sheme.

Kalman filter

Graph diagramm

Variables


- θ_i = Measurement aka. RecoHit
- $w_{ij} =$ Propagation matrix
- E_i = Track state at measurement

Update rule

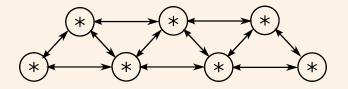
Full state propagation including covariances. No Vote part.

Graph diagramm - layered arrangement

Variables

Same as Kalman filter

Update rule


Vote part is a mean with weights mitigated by stepfunctions (+ annealing)

Weighted Cellular Automaton \leftrightarrow Kalman Filter

Hopfield network

Graph diagramm - symmetrical edges

Variables

- θ_i = External excitation a priori probability of being in the track
- w_{ii} = Mutal support between cells
- $E_i(=s_i) =$ Posterior probability of being in the track

Update rule

$$m{s}_{j} = ext{step}\left(\sum_{i}m{w}_{ij}\cdotm{s}_{i}+ heta_{j}
ight)$$

+ annealing sheme

Similarity to cellular automaton

- Minimizes the same energy function
- While hopfield network states agreement with neighbors, cellular automaton sums agreement over maximal paths
- > Hopfield network is differential to cellular automaton.

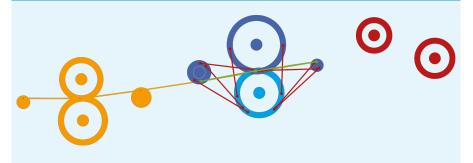
Similarities

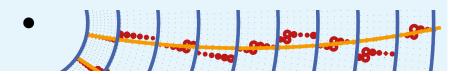
The weighted cellular automaton can be interpreted as

- an integal (sum) form of the Hopffield network.
- a Kalman filter / DAF propagating only the best goodness of fit, but not the entire track state.

Weights

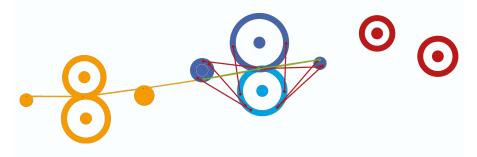
What is the best choice of weight to make it most similar to the Kalman filter? $\chi^2?$


> Weighted Cellular Automaton \leftrightarrow Kalman Filter

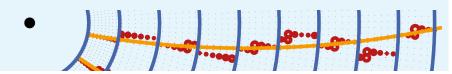

Bottom-up in two stages

Combine hits in the same superlayer to segments

Combine segments to tracks



Weighted Cellular Automaton \leftrightarrow Kalman Filter


Bottom-up in two stages

Combine hits in the same superlayer to segments

Combine segments to tracks

Weighted Cellular Automaton \leftrightarrow Kalman Filter

Axial segment pair creation

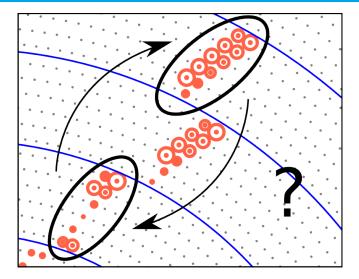


Figure: Make axial segment pairs by fitting and extrapolating with a two-dimensional circle for each segment

Weighted Cellular Automaton ↔ Kalman Filter

Segment triple creation

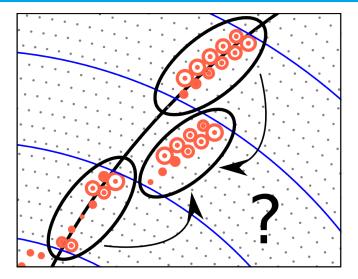


Figure: Combine axial segment pairs with intermediate stereo segment to segment triples

```
Weighted Cellular Automaton \leftrightarrow Kalman Filter
```

Segment triple connections

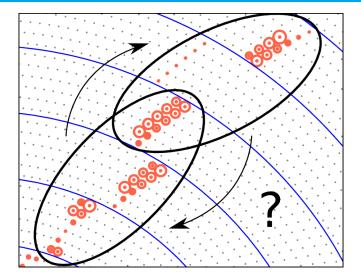


Figure: Generate connections of neighboring segment triples to form the graph edges.

Axial segment pair creation

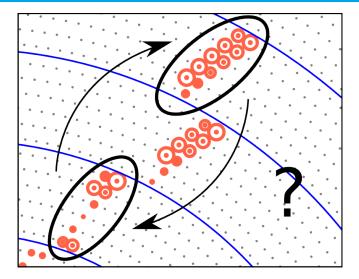
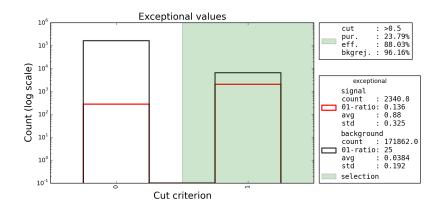



Figure: Make axial segment pairs by fitting and extrapolating with a two-dimensional circle for each segment

Weighted Cellular Automaton ↔ Kalman Filter

Achievable cut quality for axial segment pair connections

Figure: Cut using combination of parameter estimates - no error estimates calculated

Better cut criterions

- > should use χ^2 values
- need error estimates from the fits to the segment
- > are valuable for the stereo layer incoperation as well

Frühwirt / Riemann fit

- Parameter estimation is undistored.
- Estimates of the covariance are slightly problematic, because
 - > 4 parameters are fitted, where there should be only 3,
 - > parameters are not gaussian distributed.

Karimäki fit

- > 2D circle fit in polar coordinates
- Parameter estimates made with severer approximations.
- Estimates of the covariance
 - > in gauss distributed perigee coordinates
 - > are optimal and quickly calculatable.

Frühwirt / Riemann fit

- > Parameter estimation is undistored.
- Estimates of the covariance are slightly problematic, because
 - > 4 parameters are fitted, where there should be only 3,
 - parameters are not gaussian distributed.

Karimäki fit

- > 2D circle fit in polar coordinates
- Parameter estimates made with severer approximations.

Estimates of the covariance

- > in gauss distributed perigee coordinates
- > are optimal and quickly calculatable.

> Weighted Cellular Automaton \leftrightarrow Kalman Filter

Near future

- Commit more documentation
- Rebrand the local finder to Cellular Automaton finder
- Implement the variance estimates