NLO QCD calculations of Higgs production at LHC with GoSam

Hans van Deurzen Max Planck Institute for Physics, Munich

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Alexander von Humboldt Stiftung/Foundation

Outline

- Motivation, introduction GoSam
- Integrand decomposition
- Extension to higher rank
 - Computational strategy
 - Applications: H+2j, H+3j in GF
- Ninja
 - Improved algorithm
 - Applications: Httj

Motivation

- Higgs discovery by Atlas and CMS
- Need to determine properties:
 - spin
 - CP properties
 - couplings

Motivation for NLO

Higgs+jet at NNLO [Boughezal et al. (2013)]

Top pair production at NNLO [Czakon, Fiedler, Mitov (2013)]

- Reduce theoretical error
- Strong dependence on renormalization and factorization scale

Hans van Deurzen

NLO calculations

$$\sigma^{NLO} = \int_{m} \left[d^{(4)} \sigma^{B} + \int_{loop} d^{(d)} \sigma^{V} + \int_{1} d^{(d)} \sigma^{S} \right] + \int_{m+1} \left[d^{(4)} \sigma^{R} - d^{(4)} \sigma^{S} \right]$$

- NLO calculation consists of:
 - LO: Born diagram
 - Virtual corrections: loop diagrams
 - Real corrections: additional radiation
 - Subtraction terms to regulate infinities

← GoSam

Collaboration

Cullen, HvD, Greiner, Heinrich, Luisoni, Mastrolia, Mirabella, Ossola, Peraro, Reichel, Schlenk, von Soden-Fraunhofen, Tramontano

Reduction algorithms

- Samurai, Xsamurai d-dimensional integrand-level reduction current default [Mastrolia, Ossola, Reiter, Tramontano]; [HvD (2013)]
- Golem95, Golem95 higherrank extension
 Tensorial reduction
 Numerically stable → rescue system
 [Binoth, Guillet, Heinrich, Pilon, Reiter]; [Guillet, Heinrich, von Soden-Fraunhofen]
- Ninja

Integrand-level+Laurent expansion Stable and fast [Mastrolia, Mirabella, Peraro]; [HvD, Luisoni, Mastrolia, Mirabella, Ossola, Peraro]

$$\mathcal{M}_n \equiv \int \mathcal{A}_n(\bar{q}) \, d\bar{q} \equiv \int d^{-2\epsilon} \mu \int d^4 q \frac{N(q,\mu^2)}{\bar{D}_0 \dots \bar{D}_{n-1}}$$

Decompose:

$$c_{5,0}$$
 $d+2$ + $c_{4,0}$ + $c_{4,4}$ $d+4$ + $c_{3,0}$ + $c_{3,7}$ $d+2$ + $c_{2,0}$ - + $c_{2,9}$ - $d+2$ + $c_{1,0}$

$$\int d^{-2\epsilon} \mu^2 d^4 q \mathcal{A}_n(q) = \int d\bar{q} \frac{c_{5,0} \mu^2}{D_0 D_1 D_2 D_3 D_4} + \int d\bar{q} \frac{c_{4,0} + c_{4,4} \mu^4}{D_0 D_1 D_2 D_3} + \int d\bar{q} \frac{c_{3,0} + c_{3,7} \mu^2}{D_0 D_1 D_2} + \int d\bar{q} \frac{c_{2,0} + c_{2,9} \mu^2}{D_0 D_1} + \int d\bar{q} \frac{c_{1,0}}{D_0}$$

Hans van Deurzen

Amplitudes at one loop

$$\int d^{-2\epsilon} \mu^2 d^4 q \mathcal{A}_n(q) = \int d\bar{q} \frac{c_{5,0} \mu^2}{D_0 D_1 D_2 D_3 D_4} + \int d\bar{q} \frac{c_{4,0} + c_{4,4} \mu^4}{D_0 D_1 D_2 D_3} + \int d\bar{q} \frac{c_{3,0} + c_{3,7} \mu^2}{D_0 D_1 D_2} + \int d\bar{q} \frac{c_{2,0} + c_{2,9} \mu^2}{D_0 D_1} + \int d\bar{q} \frac{c_{1,0}}{D_0} \frac{c_{1,0}}{D_0} + \int d\bar{q} \frac{c_{1,0}}{D_0} \frac{c_{1,0}}{D_0} \frac{c_{1,0}}{D_0} + \int d\bar{q} \frac{c_{1,0}}{D_0} \frac{$$

Integrand level:

$$\begin{aligned} \mathcal{A}_{n}(q) &= \frac{c_{5,0}\mu^{2} + f_{01234}(q,\mu^{2})}{D_{0}D_{1}D_{2}D_{3}D_{4}} + \frac{c_{4,0} + c_{4,4}\mu^{4} + f_{0123}(q,\mu^{2})}{D_{0}D_{1}D_{2}D_{3}} \\ &+ \frac{c_{3,0} + c_{3,7}\mu^{2} + f_{012}(q,\mu^{2})}{D_{0}D_{1}D_{2}} + \frac{c_{2,0} + c_{2,9}\mu^{2} + f_{01}(q,\mu^{2})}{D_{0}D_{1}} + \frac{c_{1,0} + f_{0}(q,\mu^{2})}{D_{0}} \\ &\int d^{-2\epsilon}\mu^{2} \int d^{4}q \quad \frac{f_{ij...}(q,\mu^{2})}{D_{i}D_{j...}} = 0 \end{aligned}$$

Hans van Deurzen

Parametric form integrand

$$\begin{aligned} \mathcal{A}_{n} &= \sum_{ijklm} \frac{\Delta_{ijklm}(q,\mu^{2})}{D_{i}D_{j}D_{k}D_{l}D_{m}} + \sum_{ijkl} \frac{\Delta_{ijkl}(q,\mu^{2})}{D_{i}D_{j}D_{k}D_{l}} + \\ &+ \sum_{ijk} \frac{\Delta_{ijk}(q,\mu^{2})}{D_{i}D_{j}D_{k}} + \sum_{ij} \frac{\Delta_{ij}(q,\mu^{2})}{D_{i}D_{j}} + \sum_{i} \frac{\Delta_{i}(q,\mu^{2})}{D_{i}D_{j}} \end{aligned}$$

Residues multivariate polynomials

- Need rank to determine generic form
- Renormalizability requires rank ≤ propagators

Hans van Deurzen

Parametric form integrand

$$\mathcal{A}_{n} = \sum_{ijklm} \frac{\Delta_{ijklm}(q, \mu^{2})}{D_{i}D_{j}D_{k}D_{l}D_{m}} + \sum_{ijkl} \frac{\Delta_{ijkl}(q, \mu^{2})}{D_{i}D_{j}D_{k}D_{l}} + \sum_{ijkl} \frac{\Delta_{ijk}(q, \mu^{2})}{D_{i}D_{j}D_{k}} + \sum_{ij} \frac{\Delta_{ij}(q, \mu^{2})}{D_{i}D_{j}} + \sum_{i} \frac{\Delta_{ij}(q, \mu^{2})}{D_{i}} + \sum_{i}$$

• Form residues process independent

Values of coefficients process dependent

Hans van Deurzen

$$\mathcal{A}_n = \sum_{ijklm} \frac{\Delta_{ijklm}(q,\mu^2)}{D_i D_j D_k D_l D_m} + \sum_{ijkl} \frac{\Delta_{ijkl}(q,\mu^2)}{D_i D_j D_k D_l} + \sum_{ijklm} \frac{\Delta_{ijklm}(q,\mu^2)}{D_i D_j D_k D_l} + \sum_{ijklm} \frac{\Delta_{ijklm}(q,$$

$$+\sum_{ijk}\frac{\Delta_{ijk}(q,\mu^2)}{D_iD_jD_k}+\sum_{ij}\frac{\Delta_{ij}(q,\mu^2)}{D_iD_j}+\sum_i\frac{\Delta_i(q,\mu^2)}{D_i}$$

Quintuple cut

Hans van Deurzen

$$\Delta_{ijk\ell m}(\bar{q}) = \operatorname{Res}_{ijk\ell m} \left\{ \frac{N(\bar{q})}{\bar{D}_0 \cdots \bar{D}_{n-1}} \right\}$$

 $\begin{array}{c} \textbf{Integrand decomposition} \\ \downarrow \\ \Delta_{ijk\ell m}(\bar{q}) = \operatorname{Res}_{ijk\ell m} \left\{ \frac{N(\bar{q})}{\bar{D}_0 \cdots \bar{D}_{n-1}} \right\} \\ \end{array} \qquad 1 \text{ coefficient} \end{array}$

$$\mathcal{A}_n = \sum_{ijklm} \frac{\Delta_{ijklm}(q,\mu^2)}{D_i D_j D_k D_l D_m} + \sum_{ijkl} \frac{\Delta_{ijkl}(q,\mu^2)}{D_i D_j D_k D_l} +$$

$$+\sum_{ijk}\frac{\Delta_{ijk}(q,\mu^2)}{D_iD_jD_k}+\sum_{ij}\frac{\Delta_{ij}(q,\mu^2)}{D_iD_j}+\sum_i\frac{\Delta_i(q,\mu^2)}{D_i}$$

Quadruple cut

Hans van Deurzen

$$\Delta_{ijk\ell}(\bar{q}) = \operatorname{Res}_{ijk\ell} \left\{ \frac{N(\bar{q})}{\bar{D}_0 \cdots \bar{D}_{n-1}} - \sum_{i \ll m}^{n-1} \frac{\Delta_{ijk\ell m}(\bar{q})}{\bar{D}_i \bar{D}_j \bar{D}_k \bar{D}_\ell \bar{D}_m} \right\}$$

25 March 2014 12

$$\Delta_{ijk\ell m}(\bar{q}) = \operatorname{Res}_{ijk\ell m} \left\{ \frac{N(\bar{q})}{\bar{D}_0 \cdots \bar{D}_{n-1}} \right\}$$

$$\Delta_{ijk\ell}(\bar{q}) = \operatorname{Res}_{ijk\ell} \left\{ \frac{N(\bar{q})}{\bar{D}_0 \cdots \bar{D}_{n-1}} - \sum_{i \ll m}^{n-1} \frac{\Delta_{ijk\ell m}(\bar{q})}{\bar{D}_i \bar{D}_j \bar{D}_k \bar{D}_\ell \bar{D}_m} \right\}$$
5 coefficients

Triple cut

/

$$\Delta_{ijk}(\bar{q}) = \operatorname{Res}_{ijk} \left\{ \frac{N(\bar{q})}{\bar{D}_0 \cdots \bar{D}_{n-1}} - \sum_{i < < m}^{n-1} \frac{\Delta_{ijk\ell m}(\bar{q})}{\bar{D}_i \bar{D}_j \bar{D}_k \bar{D}_\ell \bar{D}_m} - \sum_{i < < \ell}^{n-1} \frac{\Delta_{ijk\ell}(\bar{q})}{\bar{D}_i \bar{D}_j \bar{D}_k \bar{D}_\ell} \right\}$$

Hans van Deurzen

25 March 2014 13

$$\Delta_{ijk\ell m}(\bar{q}) = \operatorname{Res}_{ijk\ell m} \left\{ \frac{N(\bar{q})}{\bar{D}_0 \cdots \bar{D}_{n-1}} \right\}$$

$$\Delta_{ijk\ell}(\bar{q}) = \operatorname{Res}_{ijk\ell} \left\{ \frac{N(\bar{q})}{\bar{D}_0 \cdots \bar{D}_{n-1}} - \sum_{i < m}^{n-1} \frac{\Delta_{ijk\ell m}(\bar{q})}{\bar{D}_i \bar{D}_j \bar{D}_k \bar{D}_\ell \bar{D}_m} \right\}$$

$$\Delta_{ijk}(\bar{q}) = \operatorname{Res}_{ijk} \left\{ \frac{N(\bar{q})}{\bar{D}_0 \cdots \bar{D}_{n-1}} - \sum_{i < m}^{n-1} \frac{\Delta_{ijk\ell m}(\bar{q})}{\bar{D}_i \bar{D}_j \bar{D}_k \bar{D}_\ell \bar{D}_m} - \sum_{i < m}^{n-1} \frac{\Delta_{ijk\ell}(\bar{q})}{\bar{D}_i \bar{D}_j \bar{D}_k \bar{D}_\ell \bar{D}_m} \right\}$$

$$\Delta_{ijk}(\bar{q}) = \operatorname{Res}_{ijk} \left\{ \frac{N(\bar{q})}{\bar{D}_0 \cdots \bar{D}_{n-1}} - \sum_{i < m}^{n-1} \frac{\Delta_{ijk\ell m}(\bar{q})}{\bar{D}_i \bar{D}_j \bar{D}_k \bar{D}_\ell \bar{D}_m} - \sum_{i < m}^{n-1} \frac{\Delta_{ijk\ell}(\bar{q})}{\bar{D}_i \bar{D}_j \bar{D}_k \bar{D}_\ell} \right\}$$
10 coefficients

Double cut

Val

$$-\underbrace{\left(\begin{array}{c} \\ \\ \end{array}\right)}\Delta_{ij}(\bar{q}) = \operatorname{Res}_{ij}\left\{\frac{N(\bar{q})}{\bar{D}_{0}\cdots\bar{D}_{n-1}} - \sum_{i<< m}^{n-1}\frac{\Delta_{ijk\ell m}(\bar{q})}{\bar{D}_{i}\bar{D}_{j}\bar{D}_{k}\bar{D}_{\ell}\bar{D}_{m}} - \sum_{i<< \ell}^{n-1}\frac{\Delta_{ijk\ell}(\bar{q})}{\bar{D}_{i}\bar{D}_{j}\bar{D}_{k}\bar{D}_{\ell}} - \sum_{i<< k}^{n-1}\frac{\Delta_{ijk\ell}(\bar{q})}{\bar{D}_{i}\bar{D}_{j}\bar{D}_{k}\bar{D}_{\ell}}\right\}$$

1 - 1

$$\Delta_{ijk\ell m}(\bar{q}) = \operatorname{Res}_{ijk\ell m} \left\{ \frac{N(\bar{q})}{\bar{D}_0 \cdots \bar{D}_{n-1}} \right\}$$

$$1 \text{ coefficient}$$

$$\Delta_{ijk\ell}(\bar{q}) = \operatorname{Res}_{ijk\ell} \left\{ \frac{N(\bar{q})}{\bar{D}_0 \cdots \bar{D}_{n-1}} - \sum_{i < m}^{n-1} \frac{\Delta_{ijk\ell m}(\bar{q})}{\bar{D}_i \bar{D}_j \bar{D}_k \bar{D}_\ell \bar{D}_m} \right\}$$

$$5 \text{ coefficients}$$

$$\Delta_{ijk}(\bar{q}) = \operatorname{Res}_{ijk} \left\{ \frac{N(\bar{q})}{\bar{D}_0 \cdots \bar{D}_{n-1}} - \sum_{i < m}^{n-1} \frac{\Delta_{ijk\ell m}(\bar{q})}{\bar{D}_i \bar{D}_j \bar{D}_k \bar{D}_\ell \bar{D}_m} - \sum_{i < m}^{n-1} \frac{\Delta_{ijk\ell}(\bar{q})}{\bar{D}_i \bar{D}_j \bar{D}_k \bar{D}_\ell \bar{D}_\ell} \right\}$$

$$10 \text{ coefficients}$$

$$\Delta_{ij}(\bar{q}) = \operatorname{Res}_{ij} \left\{ \frac{N(\bar{q})}{\bar{D}_0 \cdots \bar{D}_{n-1}} - \sum_{i < m}^{n-1} \frac{\Delta_{ijk\ell m}(\bar{q})}{\bar{D}_i \bar{D}_j \bar{D}_k \bar{D}_\ell \bar{D}_m} - \sum_{i < m}^{n-1} \frac{\Delta_{ijk\ell}(\bar{q})}{\bar{D}_i \bar{D}_j \bar{D}_k \bar{D}_\ell} \right\}$$

$$10 \text{ coefficients}$$

Single cut

$$\Delta_{i}(\bar{q}) = \operatorname{Res}_{i} \left\{ \frac{N(\bar{q})}{\bar{D}_{0} \cdots \bar{D}_{n-1}} - \sum_{i < < m}^{n-1} \frac{\Delta_{ijk\ell m}(\bar{q})}{\bar{D}_{i}\bar{D}_{j}\bar{D}_{k}\bar{D}_{\ell}\bar{D}_{m}} - \sum_{i < < \ell}^{n-1} \frac{\Delta_{ijk\ell}(\bar{q})}{\bar{D}_{i}\bar{D}_{j}\bar{D}_{k}\bar{D}_{\ell}} + \sum_{i < k}^{n-1} \frac{\Delta_{ijk}(\bar{q})}{\bar{D}_{i}\bar{D}_{j}\bar{D}_{k}} - \sum_{i < k}^{n-1} \frac{\Delta_{ijk}(\bar{q})}{\bar{D}_{i}\bar{D}_{j}} \right\}$$

Hans van Deurzen

$$\Delta_{ijk\ell m}(\bar{q}) = \operatorname{Res}_{ijk\ell m} \left\{ \frac{N(\bar{q})}{\bar{D}_{0} \cdots \bar{D}_{n-1}} \right\}$$

$$1 \text{ coefficient}$$

$$\Delta_{ijk\ell}(\bar{q}) = \operatorname{Res}_{ijk\ell} \left\{ \frac{N(\bar{q})}{\bar{D}_{0} \cdots \bar{D}_{n-1}} - \sum_{i < m}^{n-1} \frac{\Delta_{ijk\ell m}(\bar{q})}{\bar{D}_{i}\bar{D}_{j}\bar{D}_{k}\bar{D}_{\ell}\bar{D}_{m}} \right\}$$

$$5 \text{ coefficients}$$

$$\Delta_{ijk}(\bar{q}) = \operatorname{Res}_{ijk} \left\{ \frac{N(\bar{q})}{\bar{D}_{0} \cdots \bar{D}_{n-1}} - \sum_{i < m}^{n-1} \frac{\Delta_{ijk\ell m}(\bar{q})}{\bar{D}_{i}\bar{D}_{j}\bar{D}_{k}\bar{D}_{\ell}\bar{D}_{m}} - \sum_{i < m}^{n-1} \frac{\Delta_{ijk\ell}(\bar{q})}{\bar{D}_{i}\bar{D}_{j}\bar{D}_{k}\bar{D}_{\ell}\bar{D}_{m}} \right\}$$

$$10 \text{ coefficients}$$

$$\Delta_{ij}(\bar{q}) = \operatorname{Res}_{ij} \left\{ \frac{N(\bar{q})}{\bar{D}_{0} \cdots \bar{D}_{n-1}} - \sum_{i < m}^{n-1} \frac{\Delta_{ijk\ell m}(\bar{q})}{\bar{D}_{i}\bar{D}_{j}\bar{D}_{k}\bar{D}_{\ell}\bar{D}_{m}} - \sum_{i < \ell}^{n-1} \frac{\Delta_{ijk\ell}(\bar{q})}{\bar{D}_{i}\bar{D}_{j}\bar{D}_{k}\bar{D}_{\ell}} \right\}$$

$$10 \text{ coefficients}$$

$$\Delta_{ij}(\bar{q}) = \operatorname{Res}_{ij} \left\{ \frac{N(\bar{q})}{\bar{D}_{0} \cdots \bar{D}_{n-1}} - \sum_{i < m}^{n-1} \frac{\Delta_{ijk\ell m}(\bar{q})}{\bar{D}_{i}\bar{D}_{j}\bar{D}_{k}\bar{D}_{\ell}\bar{D}_{m}} - \sum_{i < \ell}^{n-1} \frac{\Delta_{ijk\ell}(\bar{q})}{\bar{D}_{i}\bar{D}_{j}\bar{D}_{k}\bar{D}_{\ell}} + \sum_{i < \ell}^{n-1} \frac{\Delta_{ijk\ell}(\bar{q})}{\bar{D}_{i}\bar{D}_{j}\bar{D}_{k}\bar{D}_{\ell}} + \sum_{i < \ell}^{n-1} \frac{\Delta_{ijk\ell}(\bar{q})}{\bar{D}_{i}\bar{D}_{j}\bar{D}_{k}\bar{D}_{\ell}} + \sum_{i < \ell}^{n-1} \frac{\Delta_{ijk}\bar{q}(\bar{q})}{\bar{D}_{i}\bar{D}_{j}\bar{D}_{k}} - \sum_{i < \ell}^{n-1} \frac{\Delta_{ijk\ell}(\bar{q})}{\bar{D}_{i}\bar{D}_{j}\bar{D}_{k}} + \sum_{i < \ell}^{n-1} \frac{\Delta_{ijk}\bar{q}(\bar{q})}{\bar{D}_{i}\bar{D}_{j}\bar{D}_{k}} - \sum_{i < \ell}^{n-1} \frac{\Delta_{ijk}\bar{q}(\bar{q})}{\bar{D}_{i}\bar{D}_{j}\bar{D}_{k}} - \sum_{i < \ell}^{n-1} \frac{\Delta_{ijk}\bar{q}(\bar{q})}{\bar{D}_{i}\bar{D}_{j}\bar{D}_{k}} + \sum_{i < \ell}^{n-1} \frac{\Delta_{ijk}\bar{q}(\bar{q})}{\bar{D}_{i}\bar{D}_{j}\bar{D}_{k}} - \sum_{i < \ell}^{n-1} \frac{\Delta_{ijk}\bar{q}\bar{q}}{\bar{D}_{i}\bar{D}_{j}\bar{D}_{k}} - \sum_{i < \ell}^{n-1} \frac{\Delta_{ijk}\bar{q$$

Hexagon: $\binom{6}{5} \cdot 1 + \binom{6}{4} \cdot 5 + \binom{6}{3} \cdot 10 + \binom{6}{2} \cdot 10 + \binom{6}{1} \cdot 5 = 461 \text{ coefficients}$

Hans van Deurzen

Effective vertices

- Effective vertex in loop adds two powers of q
- New rule: rank ≤ propagators + 1

$$\Delta_{ijk\ell m}(\bar{q}) = \operatorname{Res}_{ijk\ell m}\left\{\frac{N(\bar{q})}{\bar{D}_{0}\cdots\bar{D}_{n-1}}\right\} \qquad 1 \Rightarrow 1 \text{ coefficient}$$

$$\Delta_{ijk\ell}(\bar{q}) = \operatorname{Res}_{ijk\ell}\left\{\frac{N(\bar{q})}{\bar{D}_{0}\cdots\bar{D}_{n-1}} - \sum_{i<

$$\Delta_{ijk}(\bar{q}) = \operatorname{Res}_{ijk}\left\{\frac{N(\bar{q})}{\bar{D}_{0}\cdots\bar{D}_{n-1}} - \sum_{i<

$$\Delta_{ij}(\bar{q}) = \operatorname{Res}_{ij}\left\{\frac{N(\bar{q})}{\bar{D}_{0}\cdots\bar{D}_{n-1}} - \sum_{i<

$$\Delta_{i}(\bar{q}) = \operatorname{Res}_{i}\left\{\frac{N(\bar{q})}{\bar{D}_{0}\cdots\bar{D}_{n-1}} - \sum_{i<

$$Mostrolio Mirphelle Perper (2012)1 \text{ Live C} (2012)1$$$$$$$$$$

Hexagon: $\binom{6}{5} \cdot 1 + \binom{6}{4} \cdot 6 + \binom{6}{3} \cdot 15 + \binom{6}{2} \cdot 20 + \binom{6}{1} \cdot 15 = (461 \rightarrow)786 \text{ coefficients}$

Hans van Deurzen

25 March 2014 18

Discrete Fourier Transformation

$$P(x) = c_0 + c_1 x + c_2 x^2 + \dots + c_n x^n$$

$$x_k = \rho \exp\left[-2\pi i \frac{k}{n+1}\right]$$

$$P_k = P(x_k) = \sum_{l=0}^n c_l \rho^l \exp\left[-2\pi i \frac{k}{(n+1)}l\right]$$

$$\sum_{n=0}^{N-1} \exp\left[2\pi i \frac{k}{N}n\right] \exp\left[-2\pi i \frac{k'}{N}n\right] = N\delta_{kk'}$$

$$c_l = \frac{\rho^{-l}}{n+1} \sum_{k=0}^n P_k \exp\left[2\pi i \frac{k}{n+1}l\right]$$

[Mastrolia, Ossola, Papadopoulos, Pittau (2008)]

Hans van Deurzen

- Cuts impose conditions on the relation between variables
- These can lead to infinities when using the DFT naively
- Solution: Branch for each situation
- Especially in higherrank numerous instances
- Xsamurai: Systematic implementation

[HvD, Acta Phys. Polon. B44 (2013) 11, 2223-2230]

Higgs plus jets in GF@NLO

- Computational challenges
 - Over 10,000 diagrams
 - Higher-rank terms
 - 60 rank-7 hexagons

H+0j	1 NLO
$gg \rightarrow H$	1 NLO
H+1j	62 NLO
qq ightarrow Hg	14 NLO
gg ightarrow Hg	48 NLO
H+2j	926 NLO
qq' ightarrow Hqq'	32 NLO
qq ightarrow Hqq	64 NLO
qg ightarrow Hqg	179 NLO
gg ightarrow Hgg	651 NLO
H+3j	13179 NLO
qq' ightarrow Hqq'g	467 NLO
qq ightarrow Hqqg	868 NLO
qg ightarrow Hqgg	2519 NLO
gg ightarrow Hggg	9325 NLO

Complex calculations → GoSam enhanced

grouping, optimization through Form4.0, numerical polarization vectors, parallelization

Hans van Deurzen

Higgs + 2 jets in GF@NLO

- Results obtained with GoSam+Sherpa
- Agreement with MCFM (v6.4) [Campbell, Ellis, Williams]

[HvD, Greiner, Luisoni, Mastrolia, Mirabella, Ossola, Peraro, von Soden-Fraunhofen, Tramontano (2013)]

Higgs + 3 jets GF@NLO: cross section

[Cullen, HvD, Greiner, Luisoni, Mastrolia, Mirabella, Ossola, Peraro, Tramontano (2013)]

- Cross section obtained with hybrid setup:
 - GoSam + Sherpa for Born and virtual contributions
 - MadGraph+MadDipole+MadEvent for real contributions, subtraction terms, integrated dipoles

Higgs + 3 jets GF@NLO: cross section

[Cullen, HvD, Greiner, Luisoni, Mastrolia, Mirabella, Ossola, Peraro, Tramontano (2013)]

- Tests performed on the cross section
 - NLO H+2j: Agreement between hybrid setup and GoSam+Sherpa
 - LO H+3j: Agreement MadGraph and Sherpa
 - NLO H+3j: Independence from α -parameter (subtr.+int.dipoles)

Higgs + 3 jets GF@NLO: results

[Cullen, HvD, Greiner, Luisoni, Mastrolia, Mirabella, Ossola, Peraro, Tramontano (2013)]

Higgs + 3 jets GF@NLO: distributions

[Cullen, HvD, Greiner, Luisoni, Mastrolia, Mirabella, Ossola, Peraro, Tramontano (2013)]

 pp→Hjjj can be paired with available MC programs for further phenomenological analyses

Ninja

- New reduction algorithm based on Laurent expansion [Mastrolia, Mirabella, Peraro (2012)]
- Improved in all directions
 - Faster (timings per PSP)
 - More stable (less bad points)
 - More precise (in correct digits)
- Higher rank included

[Peraro (2014)] [HvD, Luisoni, Mastrolia, Mirabella, Ossola, Peraro (2013)]

Hans van Deurzen

pp → Htt +1 jet @ NLO

[HvD, Luisoni, Mastrolia, Mirabella, Ossola, Peraro (2013)]

- First application of GoSam+Ninja
- Two different mass scales: Higgs and top
- 51 hexagons in the gluon-gluon channel

$t\bar{t}H + 1j$	1895 NLO		
$qq \rightarrow H t \bar{t} g$	320 NLO		
$gg ightarrow Ht ar{t}g$	1575 NLO		

$pp \rightarrow Ht\bar{t} + 1$ jet results

[HvD, Luisoni, Mastrolia, Mirabella, Ossola, Peraro (2013)]

$$\mu_{R} = \mu_{F} = \mu_{0} \qquad H_{T} = \sum_{i} |p_{T}^{i}|$$

$$GA_{T} = (m_{T}^{H} m_{T}^{t} m_{T}^{\bar{t}})^{1/3} + \sum_{jets} |p_{T}^{j}|$$

$$\mu_{0} = 2GA_{T} \qquad \mu_{0} = H_{T}$$

$$\frac{Central Scale \qquad \sigma_{LO} \text{ [fb]} \qquad \sigma_{NLO} \text{ [fb]}}{2GA_{T} \qquad 80.03^{+35.64}_{-23.02} \qquad 100.6^{+0.00}_{-9.43}} \\
H_{T} \qquad 88.93^{+41.41}_{-26.13} \qquad 102.3^{+0.00}_{-15.82}$$

$pp \rightarrow Ht\bar{t} + 1$ jet results

[HvD, Luisoni, Mastrolia, Mirabella, Ossola, Peraro (2013)]

Hans van Deurzen

25 March 2014 30

pp → Htt +1 jet results

[HvD, Luisoni, Mastrolia, Mirabella, Ossola, Peraro (2013)]

Vector Boson Fusion

H+2j	240 NLO
$us \rightarrow Hdc$	24 NLO
$uc \rightarrow Huc$	24 NLO
$us \rightarrow Hus$	24 NLO
$ds \rightarrow Hds$	24 NLO
$ud \to Hud$	48 NLO
uu ightarrow Huu	48 NLO
$dd \to H dd$	48 NLO
H+3j	2160 NLO
$\begin{array}{c} \mathbf{H+3j} \\ \\ us \rightarrow Hdcg \end{array}$	2160 NLO 216 NLO
$egin{array}{c} \mathbf{H+3j} \\ us ightarrow Hdcg \\ uc ightarrow Hucg \end{array}$	2160 NLO 216 NLO 216 NLO
H+3j us ightarrow Hdcg uc ightarrow Hucg us ightarrow Husg	2160 NLO 216 NLO 216 NLO 216 NLO
$egin{aligned} \mathbf{H+3j} \ us ightarrow Hdcg \ uc ightarrow Hucg \ us ightarrow Husg \ ds ightarrow Hdsg \end{aligned}$	2160 NLO 216 NLO 216 NLO 216 NLO 216 NLO
H+3j us ightarrow Hdcg uc ightarrow Hucg us ightarrow Husg ds ightarrow Hdsg ud ightarrow Hudg	2160 NLO 216 NLO 216 NLO 216 NLO 216 NLO 432 NLO
$\mathbf{H+3j}$ us ightarrow Hdcg uc ightarrow Hucg us ightarrow Husg ds ightarrow Hdsg ud ightarrow Hudg uu ightarrow Huug	2160 NLO 216 NLO 216 NLO 216 NLO 216 NLO 432 NLO 432 NLO

Conclusions

- Samurai has been extended to higher rank: Xsamurai
- Higgs plus two and three jets in GF have been calculated
- Ninja has been introduced as new algorithm
- Httj has been calculated
- Higgs plus jets in VBF is no problem

Backup slides

Hans van Deurzen

Rank of the numerator

Hans van Deurzen

Effective vertices

Hans van Deurzen

$$\Lambda(\mu^2, q) \quad q^{\mu} = \sum x_i e_i^{\mu} \to (\mu^2, x_1, x_2, x_3, x_4)$$

- Five variables
- Quintuple cut: 5 conditions on 5 variables
 Everything constrained
- Quadruple cut: 4 conditions on 5 variables
 1 free variable

 $\Lambda(\mu^2)$

[HvD, Acta Phys. Polon. B44 (2013) 11, 2223-2230]

Hans van Deurzen

25 March 2014 37

- Triple cut: 3 conditions on 5 variables
 → 2 free variables
- One of those conditions constrains the product

$$\begin{array}{ccc} x_3 x_4 = C(\mu^2) \\ \Lambda(\mu^2, x_3) & \stackrel{\text{DFT}}{\to} & c_i \propto \frac{1}{C} \\ \Lambda(\mu^2, x_3) \\ \Lambda(\mu^2, x_4) \end{array} \begin{array}{c} \text{DFT} & c_i \propto \frac{1}{1-C} \end{array}$$

[HvD, Acta Phys. Polon. B44 (2013) 11, 2223-2230]

Hans van Deurzen

38

Quadruple cut		Triple cut	C = 0	$C \neq 0$
$\Lambda(0,q)$	2	$\Lambda(0, x_3, C/x_3)$	5	9
		$\Lambda(0, C/x_4, x_4)$	4	0
$\overline{-\Lambda(+\mu_s^2,q)}$	2	$\Lambda(+\mu_s^2, x_3, C/x_3)$	5	5
$\underline{\qquad \Lambda(-\mu_s^2,q) \qquad}$	2	$\Lambda(-\mu_s^2, 1, C)$	1	1

[HvD, Acta Phys. Polon. B44 (2013) 11, 2223-2230]

Hans van Deurzen

25 March 2014 39

- Double cut: 2 conditions on 5 variables
 3 free parameters
- One of those constraints the product

$$x_3x_4 = F(\mu^2, x_1) = A x_1^2 + B x_1 + C(\mu^2)$$

 Numerous branchings: F can be zero/non-zero, equation can have 0,1 or 2 solutions

[HvD, Acta Phys. Polon. B44 (2013) 11, 2223-2230]

Double cut	F = 0	$F \neq 0$	Single cut	G = 0	$G \neq 0$
$\overline{\Lambda(0,0,x_3,F/x_3)}$	4	7	$\Lambda(0, x_1, G/x_1, 0, 0)$	3	5
$\Lambda(0,0,F/x_4,x_4)$	3	0	$\Lambda(0, G/x_2, x_2, 0, 0)$	2	0
$\overline{\Lambda(0, x_{1a}, x_3, F/x_3)}$	3	5	$\Lambda(0,0,0,x_3,G/x_3)$	3	5
$\Lambda(0, x_{1a}, F/x_4, x_4)$	2	0	$\Lambda(0,0,0,G/x_4,x_4)$	2	0
$\overline{\Lambda(0, x_{1b}, x_3, F/x_3)}$	2	3	$\Lambda(0, x_1, -G/x_1, 1, 0)$	1	2
$\Lambda(0, x_{1b}, F/x_4, x_4)$	1	0	$\Lambda(0, -G/x_2, x_2, 1, 0)$	1	0
$\overline{\Lambda(0, x_{1c}, 1, F)}$	1	1	$\Lambda(0, x_1, -G/x_1, 0, 1)$	1	2
			$\Lambda(0, -G/x_2, x_2, 0, 1)$	1	0
$\overline{\Lambda(\mu_s^2, 0, x_3, F/x_3)}$	2	3	$\Lambda(\mu_s^2,0,0,0,0)$	1	0
$\Lambda(\mu_s^2, 0, F/x_4, x_4)$	1	0	$\Lambda(\mu_s^2,1,G,0,0)$	0	1
$\Lambda(\mu_s^2, 1, 1, F)$	1	1			

[HvD, Acta Phys. Polon. B44 (2013) 11, 2223-2230]

Higgs + 3 jets in GF: virtual part

[Cullen, HvD, Greiner, Luisoni, Mastrolia, Mirabella, Ossola, Peraro, Tramontano (2013)]

Virtual parts computed by GoSam

3.9

20

IR poles

Hans van Deurzen

 $gg \to Hq\bar{q}g$

 $gg \rightarrow Hggg$

2519

9325

Ninja: precision correlation

[HvD, Luisoni, Mastrolia, Mirabella, Ossola, Peraro (2013)]

Hans van Deurzen

Ninja: precision

Precision Plot for $gg \to t\bar{t}Hg$: the distributions are obtained using $5 \cdot 10^4$ randomly

[HvD, Luisoni, Mastrolia, Mirabella, Ossola, Peraro (2013)]

Hans van Deurzen

pp → Htt +1 jet results

[HvD, Luisoni, Mastrolia, Mirabella, Ossola, Peraro (2013)]

NLO calculations

$$\sigma^{NLO} = \int_{m} \left[d^{(4)} \sigma^{B} + \int_{loop} d^{(d)} \sigma^{V} + \int_{1} d^{(d)} \sigma^{S} \right] + \int_{m+1} \left[d^{(4)} \sigma^{R} - d^{(4)} \sigma^{S} \right]$$

- NLO calculation consists of:
 - LO: Born diagram
 - Virtual corrections: loop diagrams
 - Real corrections: additional radiation
 - Subtraction terms to regulate infinities
- ← GoSam

Interfaces with external MC

- GoSam+MadGraph+MadDipole+MadEvent
 - ad-hoc interface
- GoSam+Sherpa
 via BLHA
- GoSam+Powheg
 via BLHA
- GoSam+Herwig
 work in progress
- GoSam+aMC@NLO
 Work in progress