Two-Loop Corrections to the Muon Magnetic Moment from Fermion/Sfermion Loops in the MSSM

Sebastian Paßehr^a

in collaboration with Helvecio Fargnoli^b, Christoph Gnendiger^c, Dominik Stöckinger^c and Hyejung Stöckinger-Kim^c, arXiv:1309.0980 [hep-ph], arXiv:1311.1775 [hep-ph].

^aMax Planck Institute for Physics, Munich, ^bUniversidade Federal de Minas Gerais, Belo Horizonte, ^cInstitute for Nuclear and Particle Physics, TU Dresden.

> DPG Spring Meeting, Mainz, 26th of March 2014

Introduction

2 Standard Model Contributions to a_{μ}

3 MSSM Contributions to a_{μ}

4 Numerical Results

5 Conclusions and Outlook

experimentally:

low energetic muon in an external homogeneous magnetic field:

- circular motion due to the electrical charge, frequency: $\omega_1 = -\frac{e}{R}B$
 - frequency: $\omega_{\rm c} = -\frac{e}{m}B$,
- precession due to the spin, frequency: $\omega_s = -\frac{e}{m}B \cdot \frac{g}{2}$,

experimentally:

low energetic muon in an external homogeneous magnetic field:

- circular motion due to the electrical charge, frequency: $\omega_{c} = -\frac{e}{m}B$,
- precession due to the spin, frequency: $\omega_{s} = -\frac{e}{m}B \cdot \frac{g}{2}$,

experimentally accesible:

$$\omega_{\mathsf{a}} := \omega_{\mathsf{s}} - \omega_{\mathsf{c}} = -\frac{e}{m}B \cdot \frac{g-2}{2},$$

measurement:

50 100 150 200 Time [us]

anomalous magnetic moment: $\Rightarrow a_{\mu} :=$

 $\omega_a \neq 0,$

What is a_{μ} ?

theoretically:

$$ie\bar{u}(p_2) \left[\gamma^{\mu}F_{\mathsf{E}}(q^2) + i\frac{\sigma^{\mu\nu}q_{\nu}}{2m_{\mu}}F_{\mathsf{M}}(q^2) \right] u(p_1),$$

 $F_{\mathsf{M}}(0) \equiv a_{\mu},$

tree-level: $F_{M}(0) = 0$,

 \Rightarrow a_{μ} induced by higher order corrections

 a_{μ} in the MSSM

contributions to a_{μ} in the Standard Model

QED	$(11658471.896\pm 0.008)\cdot 10^{-10}$			
[T. Aoyama, M. Hayakawa, T. Kinoshita and M. Nio, arXiv:1205.5370 (2012)]				
hadronic vac. pol., leading order	$(687.53 \pm 4.34) \cdot 10^{-10}$			
[M. Benayoun, P. David, L. DelBuono, F. Jegerlehner (2012)]				
hadronic vac. pol., higher order	$(-9.97\pm0.09)\cdot10^{-10}$			
[F. Jegerlehner and R. Szafron (2011)]				
hadronic light by light	$(10.5\pm2.6)\cdot10^{-10}$			
[J. Prades, E. de Rafael, A. Vainshtein, Advanced Series on Directions in High Energy Physics – Vol. 20 (2009)]				
electroweak	$(15.36 \pm 0.10) \cdot 10^{-10}$			
[C. Gnendiger, D. Stöckinger and H. Stöckinger-Kim, arXiv:1306.5546 [hep-ph]]				
	10			
theory: $a_{\mu}^{\text{SM}} = (11659175.3\pm5.1)\cdot10^{-10}$				
experiment: $a_{\mu}^{BNL} = (11659208.9\pm 6.3)\cdot 10^{-10}$				

[G. W. Bennett et al., Physical Review D 73 (2006)], [A. Hoecker, W. Marciano, Journal of Physics G 37 (2010)],

$$\Rightarrow a_{\mu}^{\text{BNL}} - a_{\mu}^{\text{SM}} = (33.6 \pm 8.1) \cdot 10^{-10} \quad (4.2\sigma)$$

Sebastian Paßehr (MPP Munich)

 a_{μ} in the MSSM

MSSM contributions to a_{μ} : one-loop corrections

loops with Chargino $\tilde{\chi}^+$ or Neutralino $\tilde{\chi}^0$ and corresponding slepton

with $C_j^{\tilde{\chi}_i}$: containing all couplings, some parts $\propto \text{sgn}(\mu) \tan \beta$, F_i : formfactors, depending on $x_i = \frac{m_{\tilde{\chi}_i}^2}{m_{\tilde{\ell}}^2}$, arXiv:1208.2884v2

1 MSSM corrections to Standard Model diagrams,

[S. Heinemeyer, D. Stöckinger, G. Weiglein, Nuclear Physics B 690 (2004)]

[S. Heinemeyer, D. Stöckinger, G. Weiglein, Nuclear Physics B 699 (2004)]

2 corrections to diagrams with supersymmetric particles:

photonic corrections,

[G. Degrassi, G. F. Giudice, Physical Review D 58 (1998)],

[P. von Weitershausen, M. Schäfer, H. Stöckinger-Kim, D. Stöckinger, Phys.Rev. D81 (2010)]

 corrections with SM fermions and superpartners: this talk, [H. Fargnoli, C. Gnendiger, SP, D. Stöckinger, H. Stöckinger-Kim, Phys. Lett. B726 (2013)],

[H. Fargnoli, C. Gnendiger, SP, D. Stöckinger, H. Stöckinger-Kim, JHEP 1402 (2014)],

two-loop corrections with closed fermion-sfermion-loop

calculated by using two different methods:

• usual two-loop evaluation,

[S. Heinemeyer, D. Stöckinger and G. Weiglein, Nucl. Phys. B 690 (2004)]

- special method for Barr–Zee type diagrams (first compute inner one-loop; get integral representation)
 - [S. M. Barr and A. Zee, Phys. Rev. Lett. 65 (1990)]

renormalization and counterterm contributions to a_{μ}

first two lines: absorbing divergencies, last line: finite.

full analytic results: [arXiv:1311.1775 [hep-ph]]

required renormalization constants:

- mass corrections to W and Z bosons: δM_W^2 , δM_Z^2 ,
- mass corrections to μ , M_1 and M_2 : $\delta\mu$, δM_1 , δM_2 ,
- field corrections to γ and γ -Z-mixing: δZ_{γ} , $\delta Z_{Z\gamma}$,
- field corrections to Higgs fields \mathcal{H}_1 and \mathcal{H}_2 : $\delta Z_{\mathcal{H}_1}$, $\delta Z_{\mathcal{H}_2}$, necessary for $\delta t_{\beta} = \frac{1}{2} t_{\beta} \left(\delta Z_{\mathcal{H}_2} \delta Z_{\mathcal{H}_1} \right)$,

on-shell renormalization of the MSSM as far as possible:

- SM particles on-shell
- both Charginos and the lightest Neutralino on-shell
- DR definition of the Higgs renormalization constants (i. e. DR definition of tan β)

benchmark scenarios:

BM1:	all one-loop masses similar,
BM4:	M_2, M_L heavy, M_1, M_E light, μ negative,

	BM1	BM4
t_eta	40	50
μ [GeV]	350	-160
M_1 [GeV]	150	140
<i>M</i> ₂ [GeV]	300	2000
M_E [GeV]	400	200
M_L [GeV]	400	2000
$a_\mu^{\mathrm{1L,SUSY}}[10^{-11}]$	440.2	159.8

comparison with known 2L contributions

$$r = \left. a_{\mu}^{2L,f\tilde{f}} \right/ a_{\mu}^{1L,SUSY}$$

standard value for sfermion masses: M = 1.5 TeV, mixing parameters: $A_f = 0$,

logarithmic behavior for large masses, threshold around 500 GeV.

stop mixing

Higgs mass symmetric for $X_t \leftrightarrow -X_t$, $a_\mu \approx$ linear in X_t .

conclusions:

- two-loop corrections with a closed fermion–sfermion–loop have been evaluated analytically in the Feynman-diagrammatic approach
- logarithmically enhanced contributions by heavy sfermions
- possibly strongest two-loop contributions in the MSSM outlook:
 - full two-loop calculation in progress,
 - \Rightarrow error on a_{μ}^{MSSM} below $1 \cdot 10^{-10}$
 - \Rightarrow new experiment/more precise Standard Model prediction become more valuable

(stronger restrictions on MSSM parameter space)

 a_μ proportional to lpha at one-loop level,

considered class of two-loop corrections: renormalization of α from photon vacuum polarization including light quarks, α in the Thomson limit \Rightarrow large intrinsic uncertainties,

choose
$$lpha(M_Z)=rac{lpha(0)}{1-\Deltalpha(M_Z)}$$
, \Deltalpha is measured,

renormalization:
$$\delta Z_{\gamma} = -\frac{1}{M_Z^2} \Re \Big[\Sigma_{\gamma}^f (M_Z^2) \Big] - \Re \Big[\partial_{p^2} \Sigma_{\gamma}^{others} (p^2) \Big].$$

extension of the SM by Supersymmetry

input sectors

squarks:

$$\begin{split} \mathbf{M}_{\tilde{q}} &= \begin{pmatrix} m_{\tilde{q}_{\mathsf{L}}}^2 + m_q^2 + M_Z^2 c_{2\beta} (T_q^3 - Q_q s_{\mathrm{w}}^2) & m_q \left(A_q^* - \mu \kappa_q \right) \\ m_q \left(A_q - \mu^* \kappa_q \right) & m_{\tilde{q}_{\mathsf{R}}}^2 + m_q^2 + M_Z^2 c_{2\beta} Q_q s_{\mathrm{w}}^2 \end{pmatrix}, \\ \kappa_t &= \frac{1}{t_\beta}, \quad \kappa_b = t_\beta, \end{split}$$

neutralinos:

$$\mathbf{Y} = \begin{pmatrix} M_1 & 0 & -M_Z s_{\mathrm{w}} c_\beta & M_Z s_{\mathrm{w}} s_\beta \\ 0 & M_2 & M_Z c_{\mathrm{w}} c_\beta & M_Z c_{\mathrm{w}} s_\beta \\ -M_Z s_{\mathrm{w}} c_\beta & M_Z c_{\mathrm{w}} c_\beta & 0 & -\mu \\ M_Z s_{\mathrm{w}} s_\beta & M_Z c_{\mathrm{w}} s_\beta & -\mu & 0 \end{pmatrix},$$

charginos:

$$\mathbf{X} = \begin{pmatrix} M_2 & \sqrt{2}M_W s_\beta \\ \sqrt{2}M_W c_\beta & \mu \end{pmatrix}$$

٠