Hochratenverhalten von Driftrohrkammern

Oliver Kortner Hubert Kroha Sebastian Nowak Sebastian Ott Robert Richter Philipp Schwegler

philipp.schwegler@mppmu.mpg.de

Max-Planck-Institut für Physik, München

DPG Frühjahrstagung

Mainz, 25. März 2013

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

ATLAS Monitored Drift Tube (MDT)-Kammern

Problematik

- Hoher Kavernenuntergrund aus Photonen und Neutronen (Sekundärreakionen in Strahlrohr und Abschirmung)
- Max. erwartete Rate bei HL-LHC: 14 kHz/cm²

- 30 mm Rohrdurchmesser
- Gasgemisch: Ar/CO₂ (93/7) bei 3 bar absolutem Druck
- Max. Driftzeit: pprox 700 ns

ohne Untergrundstrahlung:

- Einzelrohrauflösung: 80 μm
- Spurrekonstruktionsauflösung einer Kammer: $\approx 40\,\mu m$

Hochrateneffekte

Belegungsrate

Ar/CO₂ (93/7) als Driftgas:

- keine Alterungseffekte, aber
- nichtlineare Orts-Driftzeit-Beziehung r(t)

Belegungsrate:

 $Belegungsrate = Hitrate \times maximale Driftzeit$

- maximale Driftzeit:
 - 30 mm MDT: 700 ns
 - I5 mm sMDT: 185 ns
- \Rightarrow gewinne Faktor 3.8
 - Zählrate:
- ⇒ gewinne Faktor 2 wegen halbierter Querschnittsfläche

Orts-Driftzeit-Beziehung r(t) für Driftrohre mit 15 mm fast linear!

Vom Anodendraht nach außen driftende Ionen schwächen das elektrische Feld auf der Drahtoberfläche

Iterative Berechnung der Gasverstärkung mit Diethorn-Formel:

$$G = \left[\frac{E_{\text{wire}}}{3E_{\min}}\right]^{\frac{r_{\text{wire}}E_{\text{wire}}\ln 2}{\Delta V}}$$

 $E_{\rm wire}$: elektrisches Feld auf der Drahtoberfläche, abhängig von der Raumladung und damit vom Untergrundfluss.

 G_0 = nominelle Gasverstärkung = 2 × 10⁴

- Raumladungseffekte $\sim R^3$ für Photonen, $\sim R^4$ für geladene Teilchen
- Dominierender Untergrund in ATLAS sind Photonen
- ⇒ Halbierung des Rohrdurchmessers erhöht die Ratenfähigkeit um Faktor 8

Weiterer Effekt durch Raumladung

- Raumladung fluktuiert zeitlich und räumlich
- ⇒ E-Feld variiert während dem Driften der Elektronen
- \Rightarrow Auflösungsverschlechterung \sim Driftzeit/radius

Effekt verschwindet praktisch für Driftrohre mit 15 mm Durchmesser

Messung in der Gamma Irradiation Facility (CERN)

Bestrahlung mit Photonen (662 keV)

- ¹³⁷Cs-Quelle simuliert dominierenden Kavernenuntergrund in ATLAS
- Messung mit kosmischen Myonen
- Abgeschirmte Kammerbereiche für präzisen Spurrekonstruktion

Prototypkammer

Messung am Maier-Leibnitz-Laboratorium (Garching)

Bestrahlung mit Protonen (20 MeV)

- Messung zusammen mit LMU München
- Ziel: Test der sMDT-Kammern unter stark ionisierender Bestrahlung
- Gleiches Messprinzip wie zuvor:
 - Bestrahlung der mittleren Rohrlage
 - Rekonstruktion von Myonspuren der kosmischen Strahlung in unbestrahlten Rohrlagen

Messergebnisse Abnahme der Gasverstärkung

Zwei Methoden zur Messung der Gasverstärkung:

- aus dem Strom I = R · Q · G, mit R: Zählrate, Q: Ionisationsladung, G: Gasverstärkung
- aus der ADC-Messung (Ladung Q in der Anstiegsflanke)

Proton-Bestrahlung (Strommessung):

Messergebnisse Einzelrohrauflösung

Einzelrohrauflösung:

- Halbierung des Rohrdurchmessers bringt erhebliche Verbesserung
- Kann weiter verbessert werden durch optimiertes Signalshaping

Pile-up Effekt:

Overshoot bedingt durch bipolares Signal-Shaping.

⇒Nachfolgende Pulse mit effektiv höherer Diskriminatorschwelle.

 \Rightarrow systematische Verschiebung des gemessenen Driftradius.

Messergebnisse

Einzelrohreffizienz

3σ -Effizienz:

Wahrscheinlichkeit, dass ein Treffer in einem Driftrohr innerhalb von 3 mal der Einzelrohrauflösung σ zur Spurvorhersage passt.

- Halbierung des Rohrdurchmessers bringt erhebliche Verbesserung
- Zusätzlicher Faktor zwei Unterschied in Rate durch geringere Querschnittsfläche
- Pile-up verursacht effektiv längere Totzeit
- Bei den höchsten Raten unter Protonbestrahlung nimmt der Effekt ab (Protonpulse verlieren stark an Pulshöhe)

Simulation des Pile-up Effekts

Zum quantitativen Verständnis des Pile-up Effekts:

Simulation durch Überlagern von Myon- und Gammapulsen entsprechend der Untergrundraten

⇒ Pile-up erklärt gemessene Verschlechterung von Auflösung und Effizienz vollständig.

Zusammenfassung

- Auflösung und Effizienz von Driftrohrkammern verschlechtern sich bei hohen Raten durch:
 - Abnahme der Gasverstärkung
 - Fluktuationen des E-Felds aufgrund von Raumladung
 - Treffermaskierung durch Totzeit
 - Signal Pile-up schnell aufeinander folgender Treffer
- Halbierung des Rohrdurchmessers sehr effektives Mittel:
 - kürzere Totzeit möglich (790 ns ightarrow 185 ns) \Rightarrow entscheidende Effizienzverbesserung
 - Verlust der Gasverstärkung um Faktor 8 abgeschwächt
 - Auflösungsverschlechterung durch Fluktuationen der Raumladung praktisch eliminiert
- Weitere Verbesserung möglich durch optimiertes Signalshaping (S. Ott (T 57.5))

Danke für die Aufmerksamkeit!