Bestimmung der Masse des Higgs-Boson im Kanal $pp \to H \to ZZ^* \to 4\ell$ mit dem ATLAS-Detektor am LHC

Rainer Röhrig, betreut von Oliver Kortner

Max-Planck-Institut für Physik

DPG-Frühjahrstagung 2014, Mainz

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Produktion und Zerfall des SM Higgs-Boson am LHC

Produktion und Zerfall:

⇒ Die Gluonfusion ist der dominierende Produktionsprozess des Higgs-Boson am LHC.

 σ x Verzweigungsverhältnis:

SM Higgs-Boson Prod.-WQ:

 $H \rightarrow ZZ^* \rightarrow 4\ell \text{ mit } \ell = e, \mu$:

- Exzellente Massenauflösung, da Kinematik der Leptonen vollständig rekonstruiert werden kann.
- Klare Signatur im Detektor.
- Sehr niedriger Untergrund.
- Seltener Zerfall $\approx 3\%$ (bei $m_H = 125$ GeV).

Abbildung eines $H \rightarrow ZZ^* \rightarrow 2e2\mu$ Kandidaten

ATLAS-CONF-2011-162

Rainer Röhrig (MPI für Physik)

Massenbestimmung: $H \rightarrow ZZ^* \rightarrow 4\ell$

24. März 2014 3 / 12

Ereignisselektion im Kanal $H \rightarrow ZZ^* \rightarrow 4\ell$

- isolierten Leptonen.
- Einschränkung auf den transversalen Stoßparameter d₀.
- Primäres Leptonenpaar mit einer invarianten Masse nahe der Z-Bosonmasse.

00000

- Überschuss an Ereignissen bei ca. 125 GeV mit einer Signifikanz von 6.6σ .
- Kombination der Kanäle ergibt eine Masse von $m_H = 124.3^{+0.6}_{-0.5}(\text{stat.})^{+0.5}_{-0.3}(\text{sys.})$ GeV.
- Ziel: Verringerung der systematischen Unsicherheiten.

Wiederholung der Messungen mit verbesserter Energieauflösung der Elektronen und Optimierung der Myonimpulsskala und -impulsauflösung.

Massenmessungsmethoden im Kanal $H \rightarrow ZZ^* \rightarrow 4\ell$

Zwei Ansätze bei ATLAS:

- MC-Referenzverteilung: m_{4ℓ}-Massenverteilung wird mit der Verteilung der MC-Simulation verglichen ("Template-fit").
 - Detaillierte Beschreibung der Detektor- und Rekonstruktionseffekte.
 - Große MC-Datensätze bei verschiedenen Higgs-Bosonmassen nötig.
 - Bestimmung der Higgs-Zerfallsbreite Γ_H erfordert weitere MC-Datensätze.
- 3 Analytische Faltung: $f(m_{4\ell}^{rec}, \sigma_{4\ell}) = \int g(m_{4\ell}^{gen}, m_H) \cdot T(m_{4\ell}^{rec}, m_{4\ell}^{gen}, \sigma_{4\ell}) dm_{4\ell}^{gen}$
 - Signalverteilung auf Generatorlevel $g(m_{4\ell}^{gen}, m_H)$.

Zwei Ansätze bei ATLAS:

- MC-Referenzverteilungen: m_{4ℓ}-Massenverteilung wird mit der Verteilung der MC-Simulationen ("Template-fit") verglichen.
 - Detailierte Beschreibung der Detektor- und Rekonstruktionseffekte.
 - Große MC-Datensätze bei verschiedenen Higgs-Bosonmassen benötigt.
 - Bestimmung der Higgs-Zerfallsbreite erfordert weitere MC-Datensätze.
- 3 Analytische Faltung: $f(m_{4\ell}^{rec}, \sigma_{4\ell}) = \int g(m_{4\ell}^{gen}, m_H) \cdot T(m_{4\ell}^{rec}, m_{4\ell}^{gen}, \sigma_{4\ell}) dm_{4\ell}^{gen}$
 - Signalverteilung auf Generatorlevel $g(m_{4\ell}^{gen}, m_H)$.
 - Analytische Auflösungsfunktion $T(m_{4\ell}^{rec}, m_{4\ell}^{gen}, \sigma_{4\ell})$.
 - Berücksichtigung der individuellen Massenauflösung $\sigma_{4\ell}$ in jedem Ereignis: $\sigma_{4\ell} = \sigma_{4\ell}(p_1, p_2, p_3, p_4, \sigma_{p_1}, \sigma_{p_3}, \sigma_{p_3}, \sigma_{p_4}).$
 - Bestimmung der Higgs-Bosonmasse m_H und Angabe einer Obergrenze für die Higgs-Zerfallsbreite Γ_H sind unmittelbar möglich.
 - Nur Approximation der Detektor- und Rekonstruktionseffekte.

Gegenstand des Vortrags: Methode der analytischen Faltung.

Massenmessung mit der analytischen Faltung: Moriond - 2013

- $T(m_{4\ell}^{rec}, m_{4\ell}^{gen}, \sigma_{4\ell})$ wird aus den Auflösungsfunktionen einzelner Leptonen berechnet:
 - Die Impulsauflösungsfunktion $T(p_T^{rec}, p_T^{gen}, \sigma_{p_T})$ der Myonen ist eine Gauß-Funktion.
 - Die Energieauflösungsfunktion $T(E^{rec}, E^{gen}, \sigma_E)$ der Elektronen ist eine Crystal-Ball-Funktion.
- T(m^{rec}_{4e}, m^{gen}_{4e}, σ_{4e}) ist ebenfalls eine Crystal-Ball-Funktion mit Parametern aus MC-Daten. σ_{4e} aus vorheriger Massenauflösung mit empirischem Skalierungsfaktor.
- Übrige T(m^{rec}_{4ℓ}, m^{gen}_{4ℓ}, σ_{4ℓ})-Verteilungen sind Gauß-Funktionen. σ_{4ℓ} lässt sich durch Fehlerfortpflanzung bestimmen.

Massenmessung mit der analytischen Faltung: Aktuell

- Beschreibung der Impulsauflösungsfunktion der Myonen als Summe von k_μ = 2 Normalverteilungen, um kleine nichtgaußsche Abweichungen zu berücksichtigen.
- Beschreibung der Energieauflösungsfunktion der Elektronen als Summe von k_e = 3 Normalverteilungen.
- $T(m_{4\ell}^{rec}, m_{4\ell}^{gen}, \sigma_{4\ell})$ als Summe von N Normalverteilungen.

Kanal	$k_{\mu} = 2$; $k_e = 3$	Ν
4 <i>e</i>	k_e^4	81
$2e2\mu$	$k_e^2 \cdot k_\mu^2$	36
$2\mu 2e$	$k_{\mu}^2 \cdot k_e^2$	36
4μ	k_{μ}^4	16

 Der Parameter σ_{4ℓ} ergibt sich unmittelbar aus den Parametern der Leptonauflösungsfunktionen.

Elektronenergieauflösungsfunktion

- Untersuchung der Wahrscheinlichkeit des Massenfits f
 ür alle Unterkan
 äle.
- Auf MC-Ebene ergibt sich eine Masse von: $m_H = 124.99^{+0.79}_{-0.78}$ GeV.

Rainer Röhrig (MPI für Physik)

MC-Resultate im Kanal $H \rightarrow ZZ^* \rightarrow 4\ell$: Γ_H

- Analytischer Ansatz erlaubt die Angabe einer Obergrenze der Zerfallsbreite Γ_H .
- Natürliche Breite des Higgs-Boson $\Gamma_H(m_H = 125 \text{ GeV}) \approx 4 \text{ MeV} \ll \sigma_{4\ell} \approx 2 \text{ GeV}.$
- Die $m_{4\ell}$ -Generatorverteilung ist nun eine relativistische Breit-Wigner-Verteilung mit zwei Parametern m_H und Γ_H .

- Untersuchung der Wahrscheinlichkeit des Zerfallbreitenfits bei $m_H = 125$ GeV.
- Auf MC-Ebene ergibt sich eine Zerfallsbreite von: $\Gamma_H = 0.000^{+2.322}_{-0.000}$ GeV mit 68% CL.
- CMS: $\Gamma_H \leq 1.3$ GeV mit 68% CL [CMS-HIG-13-002].

Rainer Röhrig (MPI für Physik)

- Die exakte Bestimmung der Higgs-Bosonmasse ist ein zentraler Punkt, da sie die Produktions- uns Zerfallsraten des Boson im Standardmodell bestimmt.
- Das ATLAS-Experiment bestimmt, mit Hilfe des Zerfallskanals $H \to ZZ^* \to 4\ell$ die Higgs-Bosonmasse zu einem Wert von $m_H = 124.3^{+0.6}_{-0.5}(\text{stat.})^{+0.5}_{-0.3}(\text{sys.})$ GeV.
- Die Optimierung des analytischen Faltungsmodells kann eine Verkleinerung der Unsicherheiten der Higgs-Bosonmasse ermöglichen.
- Und die Bestimmung einer Oberengrenze ($\Gamma_H \leq 2.3 \text{ GeV}$) der Zerfallsbreite erlauben.