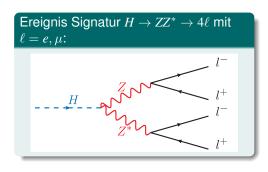
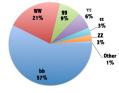
Messung von Spin und Parität des Higgs-Bosons im Kanal $pp \to H \to ZZ^* \to 4\ell$ mit dem ATLAS-Detektor

Katharina Ecker, Oliver Kortner

Max-Planck-Institut für Physik


DPG 2014 (24.-28.03. 2014, Mainz)



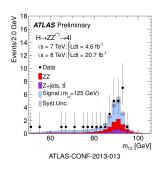
Der $H \to ZZ^* \to 4\ell$ Zerfallskanal

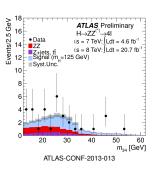
 Kleines Verzweigungsverhältnis, aber klare Signal Signatur!


Higgs decays at m_H=125GeV

http://www.quantumdiaries.org/wpcontent/uploads/2012/06/pie_chart.jpg

- Niedrige Untergründe:
 - Irreduzibel SM ZZ*
 - Peduzibel Z + jets
- Die vier Endzustandsleptonen k\u00f6nnen vollst\u00e4ndig kinematisch rekonstruiert werden:
 - $\Rightarrow H o ZZ^* o 4\ell$ Kanal bestens für Spin- und Paritätsmessung geeignet

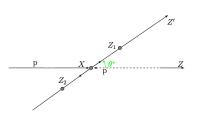

- Signifikanz von Signal über Untergrund $6.6\,\sigma$
- Standardmodell Signal Stärke: $\mu = 1.7^{+0.5}_{-0.4}$
- Masse in $H \to ZZ^* \to 4\ell$: $m_H = 124.3^{+0.6}_{-0.5} \text{ (stat) } ^{+0.5}_{-0.3} \text{ (sys) GeV}$
- ATLAS kombinierter Wert: $m_H = 125.5 \pm 0.2$ (stat) $^{+0.5}_{-0.6}$ (sys) GeV



ATLAS-CONF-2013-013

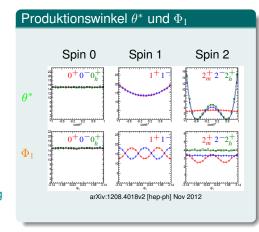
Signal strength (μ)

- \bullet Für Messung von Spin- und Parität J^P werden Ereignisse der Standardselektion im Massenbereich [115, 130] GeV berücksichtigt
- Sieben Variablen für Messung:
 - Fünf J^P -sensitive Produktions- und Helizitätswinkel θ^* , Φ_1 , θ_1 , θ_2 , Φ
 - Massen der zwei Z-Bosonen m_{12} und m_{34} zur Untergrundunterscheidung



- Berücksichtigung von Korrelationen durch multivariate Analyse
 - Boosted Decision Tree (BDT)
 - Matrix Element Likelihood Analysis (MELA)

Relevante Winkelverteilungen: Produktionswinkel


$$\bullet \ \ \text{Winkelverteilungen für} \ \left| \ pp \to X \to ZZ^* \to 4\ell \ \right| \ \text{mit} \ J(X) = 0,1,2$$

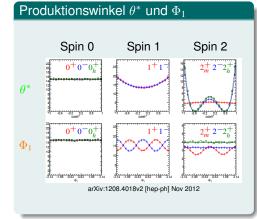
ATLAS-CONF-2013-013

 Die Produktionswinkel sind abhängig vom Produktionsmechanismus $gg \to X \text{ oder } q\bar{q} \to X$

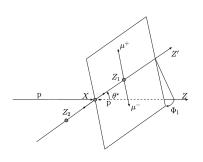

• Verteilungen sind flach für J(X) = 0

Relevante Winkelverteilungen: Produktionswinkel

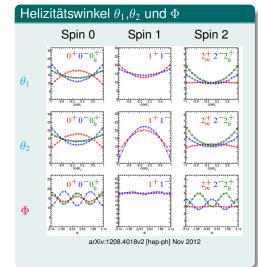
• Winkelverteilungen für $pp \to X \to ZZ^* \to 4\ell \mid \text{mit } J(X) = 0, 1, 2$


$$pp o X o ZZ^* o 4\ell$$

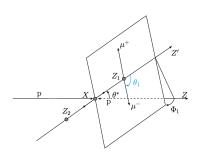
ATLAS-CONF-2013-013


 Die Produktionswinkel sind abhängig vom Produktionsmechanismus $gg \to X \text{ oder } q\bar{q} \to X$

• Verteilungen sind flach für
$$J(X) = 0$$

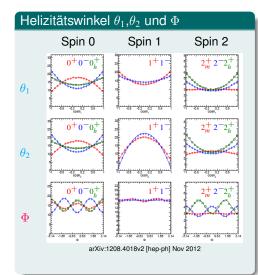

Relevante Winkelverteilungen: Helizitätswinkel

$$ullet$$
 Winkelverteilungen für $\Big| pp o X o ZZ^* o 4\ell \, \Big| \, {
m mit} \, J(X) = 0, 1, 2$

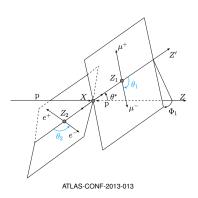

ATLAS-CONF-2013-013

 Die Helizitätswinkel sind unabhängig vom Produktionsmechanismus $gg \to X \text{ oder } q\bar{q} \to X$

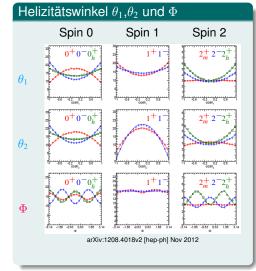
Relevante Winkelverteilungen: Helizitätswinkel


$$ullet$$
 Winkelverteilungen für $pp o X o ZZ^* o 4\ell \mid \min J(X) = 0,1,2$

ATLAS-CONF-2013-013

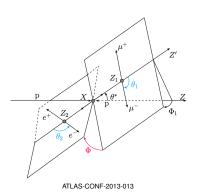

 Die Helizitätswinkel sind unabhängig vom Produktionsmechanismus

$$gg \to X \text{ oder } q\bar{q} \to X$$



Relevante Winkelverteilungen: Helizitätswinkel

$$ullet$$
 Winkelverteilungen für $pp o X o ZZ^* o 4\ell$ mit $J(X) = 0, 1, 2$



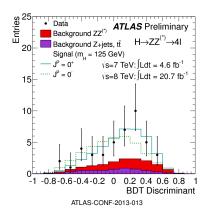
 Die Helizitätswinkel sind unabhängig vom Produktionsmechanismus $gg \to X \text{ oder } q\bar{q} \to X$

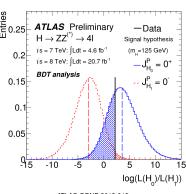
Relevante Winkelverteilungen: Helizitätswinkel

$$ullet$$
 Winkelverteilungen für $pp o X o ZZ^* o 4\ell \mid \min J(X) = 0,1,2$

 Die Helizitätswinkel sind unabhängig vom Produktionsmechanismus

$$gg \to X \text{ oder } q\bar{q} \to X$$




 J^P Messungen in $H \to ZZ^* \to 4\ell$

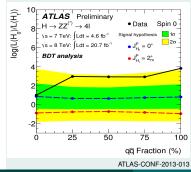
- Spin- und Paritätshypothesen Test:
 - Die Standardmodell (SM) Annahme $J^P=0^+$ wird mit anderen J^P -Hypothesen verglichen: $J^P=0^-,1^+,1^-,2_m^+,2^-$
 - J=1: Verboten durch $H o \gamma \gamma$ wegen Landau-Yang Theorem (Spin 1 Boson kann nicht in zwei masselose Spin 1 Bosonen zerfallen)
 - → Wird zur Vollständigkeit getestet
 - J = 2: Große Anzahl an Modellen
 - ightarrow Modell mit minimalen Kopplungen zu SM-Teilchen und einer Graviton Tensor Struktur 2_m^+ wird getestet
- CP-mixing Analyse:
 - Mögliche Mischung von Quantenzahlen CP-gerade und CP-ungerade des Higgsbosons wird untersucht
 - Für diese Messung ist mehr Statistik notwendig als im Datensatz 2012 vorhanden
 → Relevant für den nächsten Large Hadron Collider Run in 2015

Spin- und Paritätsmessung: Hypothesentest

- Test von SM $J^P = 0^+$ gegen $J^P = 0^-, 1^+, 1^-, 2_m^+, 2^-$
- \bullet Beispiel: Vergleich SM-Annahme von skalarem Boson $J^P=0^+$ zu pseudoskalarem Boson $J^P=0^-$ mit BDT Analyse

ATLAS-CONF-2013-013

 \Rightarrow $J^P=0^-$ Hypothese ausgeschlossen mit 97.8% CL gegen SM 0^+ Hypothese


Spin- und Paritätsmessung: Hypothesentest

Abhängigkeit vom Produktionsmechanismus

• Produktionswinkel $\cos \theta^*$ und Φ_1 abhängig von Produktion $gg \to X$ oder $q\bar{q} \to X$:

$$\begin{array}{ll} J(X) = 0: & \cos \theta^* \text{ und } \Phi_1 \text{ flach f\"{u}r Spin 0} \\ J(X) = 1: & 100\% \ q\bar{q} \to X \text{ Produktion} \\ & (gg \to X \text{ verboten wegen Landau-Yang Theorem}) \\ J(X) = 2: & gg \to X \text{ und } q\bar{q} \to X \text{ Produktion m\"{o}glich} \\ \end{array} \right\} \begin{array}{ll} \text{Produktion} \\ \text{Produktion} \\ \text{relevant f\"{u}r} \\ J^P\text{-Messung} \end{array}$$

Variation von Anteil an $q\bar{q} \to X$ Produktion von Spin 2 Teilchen:

- $\ln H \to ZZ^* \to 4\ell$:
 - \Rightarrow Erwartete Separation SM 0^+ zu 2_m^+ unabhängig von Spin 2 Produktion
- Dies ist nicht der Fall in anderen Zerfallskanälen

Spin- und Paritätsmessung: Hypothesentest

Ergebnis

$SM J^P = 0^+$	J^P ausgeschl. m. CL [%]	
Test mit J^P	BDT	MELA
0-	97.8	99.6
1+	99.8	99.4
1-	94.0	96.9
2_m^+	83.2	81.8
2^{-}	64.2	88.4

ATLAS-CONF-2013-013

 \Rightarrow SM $J^{P}=0^{+}$ bevorzugt für das neue Boson gegenüber $J^{P}=0^{-},1^{+},1^{-}$

Frühjahr 2014: Veröffentlichung neuer Ergebnisse der $H \to ZZ^* \to 4\ell$ Gruppe mit 2011-2012 Datensatz von 25 fb $^{-1}$

Spin- und Paritätsmessung: Ausblick

Zusätzliche (50-75)fb $^{-1}$ werden für die nächste LHC Datennahme ab 2015 erwartet:

- Hypothesentest:
 - Zusätzliche Spin 2 Modelle zu 2_m^+ und 2^- untersuchen
 - Spin 2 ausschließen in $H \to ZZ^* \to 4\ell$ Kanal
- OP-mixing Analyse:
 - Hypothesentest: SM $J^P=0^+$ bevorzugt und <u>purer</u> $J^P=0^-$ ausgeschlossen \to Beimischung von nicht-SM CP-Zuständen zu SM CP-Zustand in Zerfallsamplitude $A(H\to ZZ^*)$ noch nicht ausgeschlossen!
 - ATL-PHYS-PUB-2013-013: Prospects for measurements of the HZZ vertex tensor structure in H → ZZ* → 4ℓ decay channel with ATLAS

Ausschlussgrenzen für nicht-SM CP-geraden/CP-ungeraden Anteil an Higgs Produktion mit 95% CL:

```
f_{g2} < 0.29 (0.12) bei 300 fb<sup>-1</sup>(3000 fb<sup>-1</sup>)
f_{g4} < 0.15 (0.037) bei 300 fb<sup>-1</sup>(3000 fb<sup>-1</sup>)
```