Messung von Spin und Parität des Higgs-Bosons im Kanal $pp \rightarrow H \rightarrow ZZ^* \rightarrow 4\ell$ mit dem ATLAS-Detektor

Katharina Ecker, Oliver Kortner

Max-Planck-Institut für Physik

DPG 2014 (24.-28.03. 2014, Mainz)

 Kleines Verzweigungsverhältnis, aber klare Signal Signatur!

Higgs decays at m_H=125GeV

- Die vier Endzustandsleptonen können vollständig kinematisch rekonstruiert werden:
 - \Rightarrow $H \rightarrow ZZ^* \rightarrow 4\ell$ Kanal bestens für Spin- und Paritätsmessung geeignet

- Signifikanz von Signal über Untergrund 6.6 σ
- Standardmodell Signal Stärke: $\mu = 1.7^{+0.5}_{-0.4}$
- Masse in $H \to ZZ^* \to 4\ell$: $m_H = 124.3^{+0.6}_{-0.5} \text{ (stat)} \stackrel{+0.5}{_{-0.3}} \text{ (sys)} \text{ GeV}$
- ATLAS kombinierter Wert: $m_H = 125.5 \pm 0.2 \text{ (stat)} \stackrel{+0.5}{-0.6} \text{ (sys)} \text{ GeV}$

ATLAS-CONF-2013-013

- Für Messung von Spin- und Parität *J*^{*P*} werden Ereignisse der Standardselektion im Massenbereich [115, 130] GeV berücksichtigt
- Sieben Variablen für Messung:
 - Fünf J^P -sensitive Productions- und Helizitätswinkel $\theta^*, \Phi_1, \theta_1, \theta_2, \Phi$
 - Massen der zwei Z-Bosonen m₁₂ und m₃₄ zur Untergrundunterscheidung

- Berücksichtigung von Korrelationen durch multivariate Analyse
 - Boosted Decision Tree (BDT)
 - 2 Matrix Element Likelihood Analysis (MELA)

Relevante Winkelverteilungen: Produktionswinkel

• Winkelverteilungen für $pp \rightarrow X \rightarrow ZZ^* \rightarrow 4\ell \mid \text{mit } J(X) = 0, 1, 2$

- Die Produktionswinkel sind abhängig vom Produktionsmechanismus $gg \rightarrow X$ oder $q\bar{q} \rightarrow X$
- Verteilungen sind flach für J(X) = 0

Relevante Winkelverteilungen: Produktionswinkel

• Winkelverteilungen für $pp \rightarrow X \rightarrow ZZ^* \rightarrow 4\ell$ mit J(X) = 0, 1, 2

- Die Produktionswinkel sind abhängig vom Produktionsmechanismus $gg \rightarrow X$ oder $q\bar{q} \rightarrow X$
- Verteilungen sind flach für J(X) = 0

Relevante Winkelverteilungen: Helizitätswinkel

• Winkelverteilungen für $pp \rightarrow X \rightarrow ZZ^* \rightarrow 4\ell \mid \text{mit } J(X) = 0, 1, 2$

ATLAS-CONF-2013-013

Relevante Winkelverteilungen: Helizitätswinkel

• Winkelverteilungen für $pp \rightarrow X \rightarrow ZZ^* \rightarrow 4\ell \mid \text{mit } J(X) = 0, 1, 2$

ATLAS-CONF-2013-013

Relevante Winkelverteilungen: Helizitätswinkel

• Winkelverteilungen für $pp \rightarrow X \rightarrow ZZ^* \rightarrow 4\ell \mid \text{mit } J(X) = 0, 1, 2$

Relevante Winkelverteilungen: Helizitätswinkel

• Winkelverteilungen für $pp \rightarrow X \rightarrow ZZ^* \rightarrow 4\ell \mid \text{mit } J(X) = 0, 1, 2$

- Spin- und Paritätshypothesen Test:
 - Die Standardmodell (SM) Annahme $J^P = 0^+$ wird mit anderen J^P -Hypothesen verglichen: $J^P = 0^-, 1^+, 1^-, 2_m^+, 2^-$
 - J = 1: Verboten durch $H \to \gamma \gamma$ wegen Landau-Yang Theorem (Spin 1 Boson kann nicht in zwei masselose Spin 1 Bosonen zerfallen)
 - \rightarrow Wird zur Vollständigkeit getestet
 - J = 2: Große Anzahl an Modellen
 - \rightarrow Modell mit minimalen Kopplungen zu SM-Teilchen und einer Graviton Tensor Struktur 2_m^+ wird getestet
- 2 CP-mixing Analyse:
 - Mögliche Mischung von Quantenzahlen CP-gerade und CP-ungerade des Higgsbosons wird untersucht
 - Für diese Messung ist mehr Statistik notwendig als im Datensatz 2012 vorhanden → Relevant für den nächsten Large Hadron Collider Run in 2015

Spin- und Paritätsmessung: Hypothesentest

- Test von SM $J^P = 0^+$ gegen $J^P = 0^-, 1^+, 1^-, 2_m^+, 2^-$
- Beispiel: Vergleich SM-Annahme von skalarem Boson $J^P = 0^+$ zu pseudoskalarem Boson $J^P = 0^-$ mit BDT Analyse

 $\Rightarrow J^P = 0^-$ Hypothese ausgeschlossen mit 97.8% CL gegen SM 0⁺ Hypothese

Spin- und Paritätsmessung: Hypothesentest

Abhängigkeit vom Produktionsmechanismus

• Produktionswinkel $\cos \theta^*$ und Φ_1 abhängig von Produktion $gg \to X$ oder $q\bar{q} \to X$:

 $\begin{array}{ll} J(X) = 0: & \cos \theta^* \mbox{ und } \Phi_1 \mbox{ flach für Spin } 0 \\ J(X) = 1: & 100\% \ q \bar{q} \rightarrow X \mbox{ Produktion} \\ & (gg \rightarrow X \mbox{ verboten wegen Landau-Yang Theorem)} \\ J(X) = 2: & gg \rightarrow X \mbox{ und } q \bar{q} \rightarrow X \mbox{ Produktion möglich} \end{array}$

Produktion nicht relevant

Produktion relevant für J^P-Messung

Variation von Anteil an $q\bar{q} \rightarrow X$ Produktion von Spin 2 Teilchen:

- $\ln H \to ZZ^* \to 4\ell$:
 - ⇒ Erwartete Separation SM 0^+ zu 2_m^+ unabhängig von Spin 2 Produktion
- Dies ist nicht der Fall in anderen Zerfallskanälen

$SMJ^P=0^+$	J^{p} ausgeschl. m. CL [%]	
Test mit J ^P	BDT	MELA
0-	97.8	99.6
1^{+}	99.8	99.4
1-	94.0	96.9
2_{m}^{+}	83.2	81.8
2^{-}	64.2	88.4

ATLAS-CONF-2013-013

 \Rightarrow SM $J^P = 0^+$ bevorzugt für das neue Boson gegenüber $J^P = 0^-, 1^+, 1^-$

Frühjahr 2014: Veröffentlichung neuer Ergebnisse der $H \rightarrow ZZ^* \rightarrow 4\ell$ Gruppe mit 2011-2012 Datensatz von 25 fb⁻¹

Katharina Ecker (MPP)

Zusätzliche (50 - 75) fb⁻¹werden für die nächste LHC Datennahme ab 2015 erwartet:

- Hypothesentest:
 - Zusätzliche Spin 2 Modelle zu 2⁺_m und 2⁻ untersuchen
 - Spin 2 ausschließen in $H \rightarrow ZZ^* \rightarrow 4\ell$ Kanal
- OP-mixing Analyse:
 - Hypothesentest: SM $J^P = 0^+$ bevorzugt und purer $J^P = 0^-$ ausgeschlossen
 - \rightarrow Beimischung von nicht-SM CP-Zuständen zu SM CP-Zustand in Zerfallsamplitude $A(H \rightarrow ZZ^*)$ noch nicht ausgeschlossen!
 - ATL-PHYS-PUB-2013-013:

Prospects for measurements of the HZZ vertex tensor structure in H \to ZZ* \to 4ℓ decay channel with ATLAS

Ausschlussgrenzen für nicht-SM CP-geraden/CP-ungeraden Anteil an Higgs Produktion mit 95% CL:

> $f_{g2} < 0.29 (0.12)$ bei 300 fb⁻¹(3000 fb⁻¹) $f_{g4} < 0.15 (0.037)$ bei 300 fb⁻¹(3000 fb⁻¹)