

Neuinterpretation von ATLAS-Resultaten zur Suche nach Supersymmetrie in die R-Parität verletzende Szenarios

Vortrag von Dominik Krauss, betreut von Mike Flowerdew

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Einführung in die RPV

- R-Parität: (-1)^{3(B-L)+2s}
 => Erhalten im MSSM um Protonzerfall zu verhindern
- R-Parität verletzt (RPV) => leichtestes supersymmetrisches Teilchen (LSP) instabil
- Superpotential mit den RPV-Termen:

Werden in diesem Vortrag behandelt

$$W_{RPV} = \frac{1}{2} \lambda_{ijk} L_i L_j \bar{E}_k + \lambda'_{ijk} L_i Q_j \bar{D}_k + \frac{1}{2} \lambda'_{ijk} \bar{U}_i \bar{D}_j \bar{D}_k + \mu_i H_u L_i$$

- L: linkshändige (S)Leptonen; E: rechtshändige (S)Leptonen
- Q: linkshändige (S)Quarks; U,D: rechtshändige (S)Quarks

Supermultipletts

H: Higgs-Dublett

 λ , λ' , λ'' , μ : Kopplungskonstanten

i, j, k: Nummer der jeweiligen (S)Fermion Generation (1, 2, 3)

Protonzerfall falls UDD (1. Generation) + LLE oder LQD

RPV-Parameter

• Superpotential für LLE und LQD:

$$W_{RPV} = \frac{1}{2} \lambda_{ijk} L_i L_j \bar{E}_k + \lambda'_{ijk} L_i Q_j \bar{D}_k$$

- Es gibt 9 LLE-Parameter (λ) und 27 LQD-Parameter (λ ')
 - Riesiger Parameterraum der untersucht werden muss
 - Alle Parameter konkurrieren miteinander
 => LSP-Zerfälle mit sehr vielen Kanälen möglich
- RPV-Analysen geben meistens Massen-Ausschlussgrenzen f
 ür nur eine bestimmte Kopplung an (alle anderen Kopplungen = 0)
 => Geringe Abdeckung des Parameterraums
- Im Folgenden: Betrachtung von LSP-Zerfällen mit mehreren Kopplungen einer Art (LLE / LQD)

Vorgehensweise

- Generatorstudie eines LSP-Zerfalls mit vorgebenen Verzweigungsverhältnissen (BR)
- Extrapolation auf LSP-Zerfälle mit anderen BR durch Ereignis Gewichtung
 => Ermöglicht 2D-Grafiken obwohl nur eine Kombination von BR simuliert wurde
- Untersuchung der Akzeptanz verschiedener ATLAS-Analysen
- Ziel: Berechnung von Ausschlussgrenzen der LSP-Masse als Funktion der BR des LSP-Zerfalls
 - Beispiel: Untersuchung des UDD-Szenarios in der RPV-Multijetanalyse (ATLAS-CONF-2013-091)

LLE-Modell

- Gluino Paar-Produktion (q = u, d, c, s)
- Neutralino als LSP
- LSP zerfällt instantan mittels aller 9 LLE RPV-Kopplungen
 => 3 Zerfallskanäle: IIν, Ιτν und ττν (I = e oder μ)
- Verzweigungsverhältnisse per Hand gesetzt
 - Symmetrisierung von e und μ
 - Technisches Detail: LSP-Zerfälle in τ mit doppelter Gewichtung verglichen zu e und μ => Erhöhung der Statistik
- 6 Endzustände:

	llν	Ιτν	ττν
llν	4I (4%)	3Ι1τ (16%)	2Ι2 τ (16%)
Ιτν		2Ι2 τ (16%)	1I3τ (32%)
ττν			4τ (16%)

 Einen Massenpunkt mit Herwig++ simuliert (100.000 Events): Gluino: 1400 GeV, Neutralino: 600 GeV Restliche SUSY-Teilchen: 4,5 TeV

Ereignis Gewichtung

Multilepton-Analyse

- Basiert auf 4 Leptonen + Etmiss Analyse (ATLAS-CONF-2013-036)
- Triggermenü für ein oder zwei leichte Leptonen ($e + \mu$)

Schnitte:		е	μ	τ	Jet
	pT [GeV]	>10	>10	>20	>20
	η	<2.47	<2.5	<2.47	<2.5

Z-Veto

- Kein SFOS Leptonpaar mit: $|m_{SFOS} m_Z| < 10 \, GeV$
- Ebenso für SFOS+I und SFOS+SFOS Kombinationen
- Signal Regionen:

	Ν(e + μ)	Ν(τ)	MET [GeV] oder Meff [GeV			
SR1	>= 4	>= 0	> 75	> 600		
SR2	3	>= 1	> 100	> 400		
SR3	2	>= 2	> 100	> 600		

Multilepton-Ergebnisse

- Berechnung der zu erwartenden Signalereignisse
 - Aufsummierung der Ereignis Gewichte über alle Endzustände unter Berücksichtigung der jeweiligen Akzeptanz
 - Normierung auf eine integrierte Luminosität von 20,3 fb⁻¹ mittels NLO Wirkungsquerschnitt von 0,74 fb
- Zum Vergleich die beobachteten Ausschlussgrenzen der Multilepton-Analyse:

LQD-Szenario

- Bei den LLE-Kopplungen gilt: $BR(l_i v_j l_k) \simeq BR(v_i l_j l_k)$
- Bei LQD hingegen: $BR(l_i u_j d_k) \simeq BR(v_i d_j d_k)$
 - Aber nicht für j = 3: $BR(l_i t d_k) \neq BR(v_i b d_k)$
 - Grund: $m_t \gg m_b$
 - zusätzlicher Parameter BR(t) / BR(b)
- PMSSM-Scan mit ISAJET
 - Stop- und Neutralinomassen variiert $\Delta m = m_{\tilde{t}} - m_{\tilde{\chi}_1^0} = konstant$
 - Andere SUSY-Teilchen entkoppelt
 - Betrachtung von $\lambda_{i11}^{'} + \lambda_{i31}^{'}$

LQD-Modell

- Gluino Paar-Produktion und Neutralino als LSP wie beim LLE-Modell
- LSP zerfällt instantan mittels LQD RPV-Kopplungen
 - Indices i und k werden variiert, j = 1
 Keine Abhängigkeit von der Stop-Masse
 - 6 verschiedene Zerfallskanäle:

i11	lqq	τ qq	vqq
BR	1/9	2/9	1/6
i13	lqb	τ qb	vqb
BR	1/9	2/9	1/6

– Daraus ergeben sich 21 Endzustände

 Einen Massenpunkt mit Herwig++ simuliert (200.000 Events): Gluino: 1100 GeV, Neutralino: 600 GeV Restliche SUSY-Teilchen: 4,5 TeV

Multijet-Analyse

- Beispiel f
 ür eine ATLAS-Analyse die zum LQD-Modell sensitiv ist
 => RPC Analyse die erstmals auf ein RPV-Szenario angewandt wird
- Publikation: JHEP 10 (2013) 130
- Endzustände: 0 Leptonen + >= 7-10 Jets + Etmiss
- Veto gegen Ereignisse mit isolierten Elektronen oder Myonen
- 19 Signalregionen:

	Multi-jet + flavour stream									Multi-jet + M_J^{Σ} stream						
Identifier	$\begin{array}{ c c c c } 8 j 5 0 & 9 j 5 0 & \geq 10 j 5 0 \end{array}$						7 j	j80	≥ 8 j 80			$\geq 8 { m j} 50$	$\geq 9 { m j} 50$	$\geq 10 \mathrm{j} 50$		
Jet $ \eta $	< 2.0						< 2.0			< 2.8						
Jet $p_{\mathbf{T}}$		$> 50{ m GeV}$					$> 80 { m ~GeV}$			$> 50 \mathrm{GeV}$						
Jet count		= 8 = 9			≥ 10	= 7			≥ 8		8	≥ 8	≥ 9	≥ 10		
b-jets	0	1	> 2	0	1	> 2		0	1	> 2	0	1	> 2			
$(p_{\rm T} > 40 \ { m GeV}, \eta < 2.5)$			~ 4			_ 1				_ 2	U	1	~ 2			
M_J^{Σ} [GeV]									$>340~{\rm and}>420$ for each case							
$E_{\rm T}^{\rm miss}/\sqrt{H_{\rm T}}$	$>4~{ m GeV^{1/2}}$					$> 4 \; { m GeV^{1/2}} > 4 \; { m GeV^{1/2}}$										

Tabelle: JHEP 10 (2013) 130

Multijet-Ergebnisse

- Vorgehensweise analog zur Multilepton-Analyse
- Normierung auf NLO Wirkungsquerschnitt von 9,3fb
- Signalregionen: N(Jets) ≥ 8 mit pT > 80 GeV
- Zum Vergleich die beobachteten Ausschlussgrenzen der Multijet-Analyse:

	0 b-Quarks	1 b-Quark	2 b-Quarks
SM-Untergrund	$0,9 \pm 0,6$	1,5 ± 0,9	$3,3 \pm 2,2$
N _{BSM} 95% CL-Limit	5	3,5	6

Zusammenfassung und Ausblick

Zusammenfassung

- Momentan geringe Abdeckung des RPV-Parameterraums in den Interpretationen der einzelnen Suchen
- Ereignis Gewichtung ermöglicht 2D-Grafiken obwohl nur eine Kombination von Verzweigungsverhältnissen simuliert wurde
 Komplexe LSP-Zerfälle können mit wenig Aufwand untersucht werden
- Erfolgreiche Anwendung für LLE- und LQD-Kopplungen
- Ausblick
 - Untersuchung der beiden Modelle mit Hilfe weiterer ATLAS-Analysen zur Suche nach Supersymmetrie
 - Studie von Massepunkten mit voller Detektorsimulation zur Bestimmung von Ausschlussgrenzen
 - Interpolation von LLE und LQD