Test von Driftrohrkammern mit hochratenfähiger Ausleseelektronik

Oliver Kortner, Hubert Kroha, Sebastian Nowak, <u>Sebastian Ott</u>, Robert Richter und Philipp Schwegler

DPG Tagung 2014

25 März

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Sebastian Ott

Test von hochratenfähiger Ausleseelektronik

25 März 1 / 15

ATLAS Monitored Drift Tube (MDT)-Chamber

- Rohrdurchmesser 30 mm
- Gasgemisch Ar/CO₂ (93/7) bei 3bar absolutem Druck
- Spannung: 3080 V
- Maximale Driftzeit ≈ 700ns
- Einstellbare Totzeit in Front-End-Elektronik
 - Während der Totzeit werden keine weiteren Treffer erkannt
 - Totzeit kann nicht beliebig klein gewählt werden
 - Totzeit aufgrund von maximaler Driftzeit und zur Vermeidung mehrfacher Schwellenübergänge gewählt

Schritt zu Rohren mit 15mm
 Durchmesser
 (D. C. L. L. (TET C.))

(P. Schwegler (T57.6))

Minimierung der Totzeit

ATLAS Monitored Drift Tube (MDT)-Chamber

- Rohrdurchmesser 30 mm
- Gasgemisch Ar/CO₂ (93/7) bei 3bar absolutem Druck
- Spannung: 3080 V
- Maximale Driftzeit ≈ 700ns
- Einstellbare Totzeit in Front-End-Elektronik
 - Während der Totzeit werden keine weiteren Treffer erkannt
 - Totzeit kann nicht beliebig klein gewählt werden
 - Totzeit aufgrund von maximaler Driftzeit und zur Vermeidung mehrfacher Schwellenübergänge gewählt

- Schritt zu Rohren mit 15mm
 Durchmesser
 (P. Schwegler (T57.6))
- Minimierung der Totzeit

Untergrund aus Photonen und Neutronen

- Entstehung durch Wechselwirkung der Kollisionsprodukte mit z.B. Abschirmung, Strahlrohr und Halterungen
- Untergrund ist proportional zur Luminosität

• Design Luminosität: $1 * 10^{34} cm^{-2} s^{-1}$

- Upgrade des LHC zum HL(High Luminosity)-LHC
 - Anstieg der Luminosität auf 7 * $10^{34} cm^{-2} s^{-1}$
 - Maximal erwartete Rate
 - In vorwärts Richtung nahe am Strahlrohr
 - 14 kHz/cm²

Small Monitored Drift Tube (sMDT)-Chamber

- Abschirmung des E-Feldes in Drahtnähe
 - Verlust von Gasverstärkung
 - Effekt ist für Photonen proportional zu *r*³
- Räumliche Beeinflussung des E-Feldes
 - Einfluss auf die Driftgeschwindigkeit
 - Effekt praktisch komplett eliminiert

Small Monitored Drift Tube (sMDT)-Chamber

Signal-Pile-Up

Base Line Restauration (BLR)

- Base Line Restauration (BLR)
 - Kein Unterschwinger aufgrund des Shapings
 - Einsatz von Dioden um Unterschwinger zu unterdrücken
- Ziel: Entwicklung eines für sMDT optimierten Chips mit BLR
 - Um gewünschten Effekt vorher zu erkennen, erste Tests mit einem verfügbaren Chip mit BLR
 - ASDBLR von der ATLAS TRT Gruppen

Base Line Restauration (BLR)

• Erste Test mit einem Pulsgenerator • Aufnahme von Pulsformen eines 15mm Rohres

Gamma Irradiation Facility (GIF)

• Test unter Bestrahlung in der Gamma Irradiation Facility (GIF) am CERN

Analyse

- Vergleich für die Region größer 2.5mm
 - Aufgrund von schlechter Hit- und 3σ-Effizienz in Drahtnähe
- Höhere Schwelle des ASDBLR
 - ASD: \sim 3fC
 - ASDBLR: ~12fC

Analyse

- Vergleich für die Region größer 2.5mm
 - Aufgrund von schlechter Hit- und 3σ-Effizienz in Drahtnähe
- Höhere Schwelle des ASDBLR
 - ASD: \sim 3fC
 - ASDBLR: ~12fC

Analysis - Resolution vs Rate

- ASDBLR ist nicht f
 ür sMDT optimiert und weist somit eine schlechtere Auflösung als der auf die Rohre angepasste ASD Chip auf
- Flachere Ratenabhängigkeit des ASDBLRs, da keine Signal-Pile-Up auftritt

Analysis - Effizienz vs Rate

• Steigerung von 59% auf 70% bei einer Rate von 14 kHz/cm²

korrigierte 3σ Effizienz = $\frac{3\sigma$ -Effizienz Hiteffizienz

Sebastian Ott

Test von hochratenfähiger Ausleseelektronik

Zusammenfassung

- Signal-Pile-Up verschlechtert Effizienz und Auflösung
- Base Line Restauration verringert diesen Effekt
- Erster Test unter Bestrahlung wurde am CERN (GIF) durchgeführt

Ergebnis

- Einfluss der BLR erkennbar
- Anstieg der Effizienz von 59% auf 70% bei 14 kHz/cm²
- Geringere Ratenabhängigkeit der Auflösung
- Ausblick
 - Entwicklung eines auf sMDT optimierten Chips mit BLR