

DPG-Frühjahrstagung 2014 24-28 March 2014

Surface effects in Segmented Germanium Detectors

Lucia Garbini Max-Planck-Institute for Physics

For the GeDet collaboration

- Introduction

- physics goal and motivation

- Experimental set up

- the detector prototype: SuperSiegfried
- the test facility: GALATEA

- Top surface scanning

- alphas in Germanium Detectors
- first qualitative results

- Summary and Outlook

Physics goal and motivations:

GOAL:

characterization of detector response for **alphas signals**

MOTIVATIONS:

Alpha Background:

- Lead contamination on surfaces
- serious and often limiting
- $0\nu\beta\beta$, Dark Matter searches

Study alpha events in a safe environment

- charge trapping
- detector's dead layer

Experimental setup:

Shoot alphas from ²⁴¹Am on Super Siegfried (SuSie) inside GALATEA

SuperSiegfried:

- true coaxial n type HPGe detector
- 18 segments: 6 in ϕ , 3 in z
- 19th segment unsegmented in φ

GALATEA:

- vacuum chamber
 - low penetrating sources
- cryo tank to cool down the detector
- 3 motors to move 2 collimators in 3D - alpha source placed in the top one
- electronics inside

What do we expect in our detector?

Alphas = heavy charged particles

- they lose energy by dE/dx
- short path inside the detector
 - surface events
 - long pulses

- alphas from the ²⁴¹Am

- all with the same Energy ~ 5 MeV
- all the same penetration depth

Alpha Scan: r = 30 mm phi = 262

Alphas in the pulses

Scanning along the radius:

- fixed angle: varying the radius with steps of few mm
- check the different paths for the charge carriers
 - close to the surfaces

Scanning along the azimuthal angle:

- fixed radius: varying the angle with steps of few degrees
- check the effect of the Electric Field
 - change on the collection efficiency
- **x** point of interaction
- \rightarrow electrons
- → holes

DPG-Frühjahrstagung 2014

Scanning points along the radius: core comparison

Scanning point along the radius: Seg 19 comparison

Seg19 Spectra for different radius and φ = 262°

Scanning points along azimuthal angle: core comparison

Core Spectra for different azimuthal angle and r = 26 mm

Scanning points along the azimuthal angle: seg19 comparison

Seg19 Spectra for different azimuthal angle and r = 26 mm

Conclusions:

- alpha events are perfect candidates to study surface effects in Segmented Germanium Detectors
- operating SuperSiegfried in vacuum, as in GALATEA, allows us to use alpha sources to scan the detector
- difference of energy read by the core and the segment is a clear tracer of surface effects that can be used to reject these events as bkg events

What's next:

- extract informations about the effective dead layer from the energy spectra
- complete the characterization of the response to alpha particles
- try to define a parameter to reject alpha background based on the difference between the core energy and the segment energy

Backup slides

From a top surface scanning point:

USING a source data set:

- clear structure due to alphas
 - ratio plot
 - correlation plot
- difficult to avoid the misidentification
- not only in the 19th segment
 - also in the segments underneath (\rightarrow mirror pulse)
- possible way to get rid of the alphas:
 - scan on the energy of the alphas
- still MISSING the automation

Data Analysis: alphas in the pulses

Zoom on the low energies:

- 59 keV gamma from the ²⁴¹Am
- 57 keV ka from ^{74}W

Core comparison: phi = 272

DPG-Frühjahrstagung 2014

Seg19 comparison: phi = 272

Data Analysis: scanning points along the radius

Zoom on the low energies:

- 59 keV gamma from the ²⁴¹Am
- 57 keV ka from ^{74}W

Core comparison: r = 26 mm

Seg19 comparison: r = 26 mm