Normalization procedure of Pulse Shape Discrimination for Broad Energy Germanium Detector

Outline:

- GERDA experiment
- BEGe detector
- PSD analysis & Results
- Outlook & Summary

Heng-Ye Liao for the GERDA collaboration Max-Planck-Institut für Physik DPG-Frühjahrstagungen @ Mainz Deutschland, 27/03/2014

The GERDA Experiment

- Search for $0\nu\beta\beta$ decay in ⁷⁶Ge @ $Q_{\beta\beta}$ =2.039 MeV
- Previous results for ⁷⁶Ge 0vββ decay:
 - **limit:** $T_{1/2}^{0\nu\beta\beta} > 1.9 \cdot 10^{25} \text{ yr} @ 90\% \text{ C.L. from HDM[EPJ. A12 (2001)147-154]}$ $> 1.6 \cdot 10^{25} \text{ yr} @ 90\% \text{ C.L. from IGEX[PRD65, 092007 (2002)]}$ • **claim:** $T_{1/2}^{0\nu\beta\beta} = 1.19_{-0.23}^{+0.37} \cdot 10^{25} \text{ yr}$ Klapdor-Kleingrothaus et al., [PL B586 (2004) 198]

Phase-I:

- Data taking: Nov. 2011 to Jun 2013, exposure: 21.6 kg·yr
- Detector:
 - 8 enrcoax detectors(17.7 kg) from HDM & IGEX
 - 5 enrBEGe Phase-II detectors (3.6 kg) (started in May 2012)
 - 3 ^{nat}Ge coaxial detector (3.0 kg)
- BI: ~10⁻² Cts/(keV·kg·yr)
- **Physics result:** $T_{1/2}^{0\nu\beta\beta} > 2.1 \cdot 10^{25}$ yr @ 90%C.L. [PRL 111 (2013) 122503] $T_{1/2}^{0\nu\beta\beta} > 3.0 \cdot 10^{25}$ yr [GERDA+HDM+IGEX results]
- Phase-I successfully completed, Klapdor claim strongly disfavored

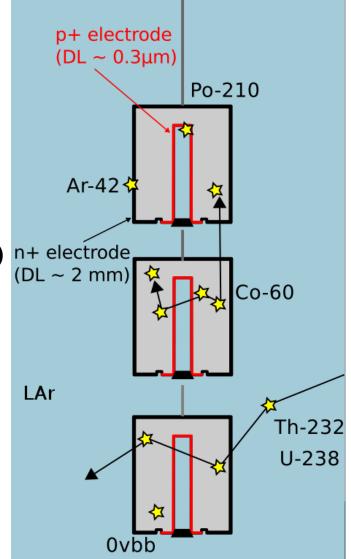
GERDA Phase-I BEGe Detectors

- Broad Energy Germanium Detectors
- Advantages of BEGe detectors:
 ✓Low capacity → low noise
 ✓Very good energy resolution
 FWHM @ 2 MeV:
 〈ΔE_{coaxial}〉 ~ 4.8 keV
 〈ΔE_{BEGe}〉 ~ 3.2 keV
 - ✓ Powerful PSD to reject backgrounds
 → A/E method
- Total Phase-I exposure for BEGes: 2.4 kg·yr
- GERDA PSD paper has been published: <u>EPJC 73 (2013) 2583</u>

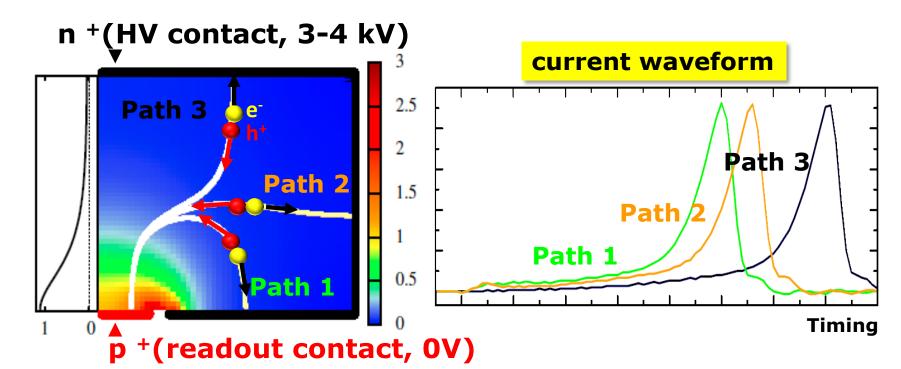
3

Backgrounds

Background sources:

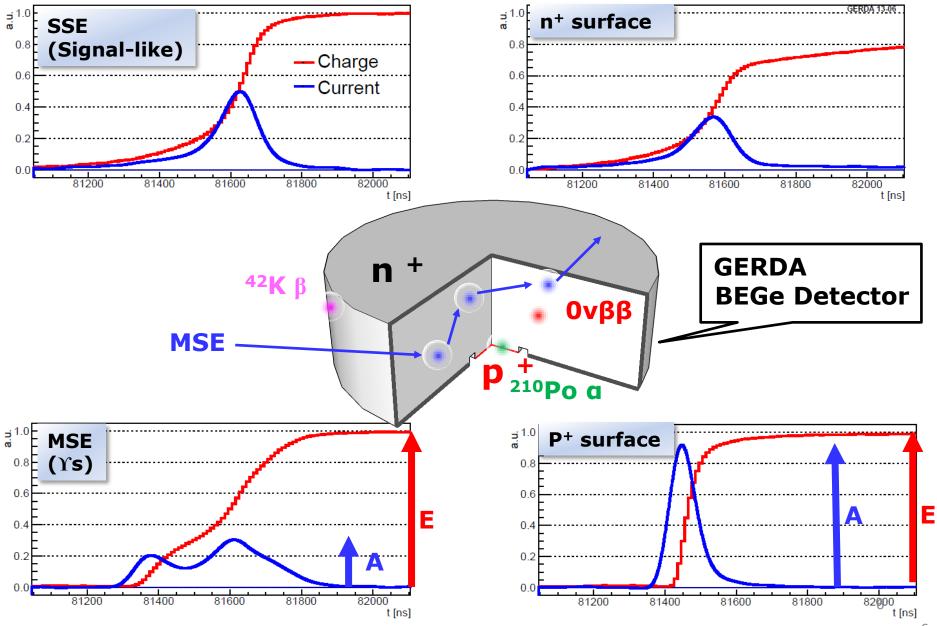

natural radioactivity(²³²Th & ²³⁸U chains):

γ-rays (e.g. ²⁰⁸Tl, ²¹⁴Bi) α-emitting isotopes from surface contamination (e.g. ²¹⁰Po or ²²²Rn in LAr)

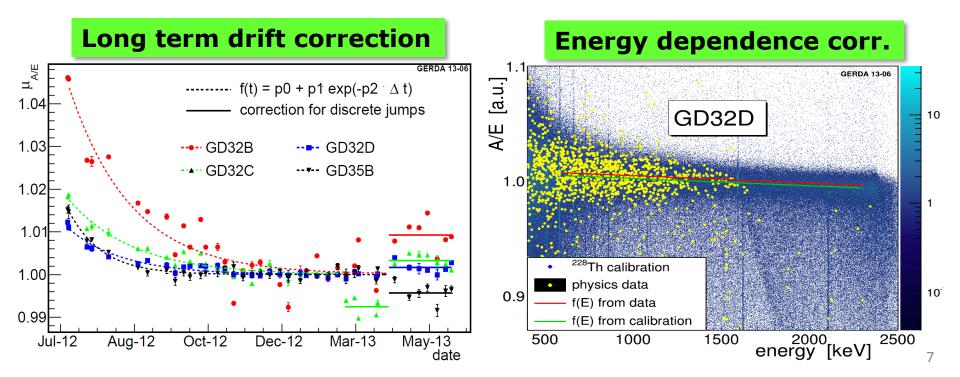

- Cosmogenic isotopes in Ge decaying inside the detectors (⁶⁸Ge,⁶⁰Co)
- Iong-lived cosmogenic Ar isotopes (³⁹Ar,⁴²K) n+ electrode

Background suppression:

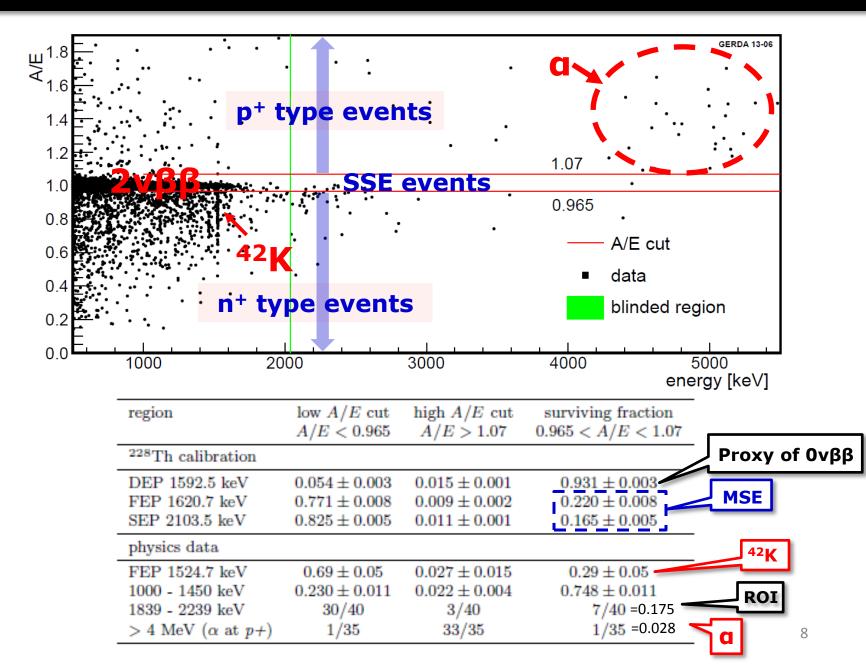
- Gran Sasso µ flux reduction(10⁶)
- Muon veto
- Detector anti-coincidence
- Pulse shape analysis
- LAr-scintillation (for phase II)


Pulse Shape Properties of BEGes

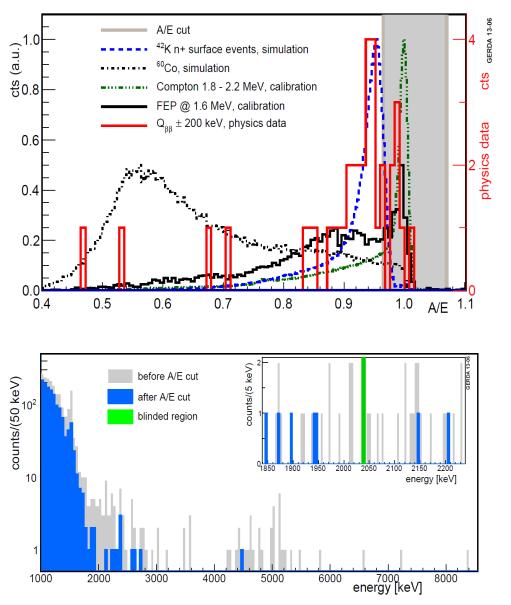
Properties of E-field of BEGe:


- "Funneling effect" Last part of the drift is the same for where the charge carriers created for individual depositions
- Different interaction positions
 - the same pulse height

A/E Pulse Shape Discrimination Method



A/E PSD Normalization


- A/E PSD:
 - Develop PSD method with ²²⁸Th calibration data apply it on physics data
 - Calibration using ²²⁸Th external source for every one/two weeks
 - 🔿 Monitor PSD stability over time
 - Optimization of PSD/Global PSD cut: Investigate normalization schemes: raw A/E → time dependence → energy dep. → Normalized A/E

PSD for the GERDA Phase-I BEGe

PSD Results for the GERDA Phase-I BEGe

► A/E PSD:

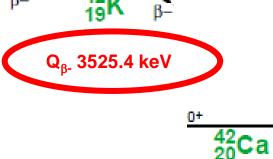
Supports the GERDA background model that most of the BEGe background is from ⁴²K on n+ contact

BI in ROI:

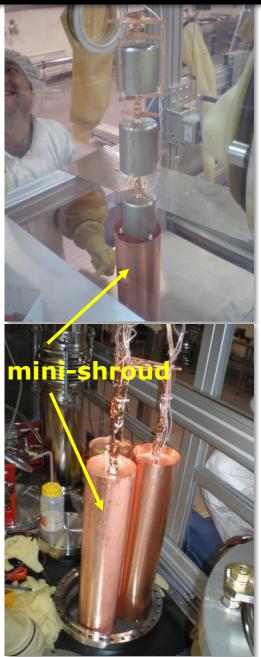
- After PSD: 0.007 Cts/(kg·yr·keV)
- Suppression factor:
 > 80% of bkg events
- Signal efficiency:
 (92 ± 2) %
- After unblinding:

0/1 event after/before PSD cut

Outlook & Summary


- A/E PSD of BEGes demonstrates powerful SSE/MSE pulse shape recognition efficiency
- Normalization procedure improves
 PSD recognition efficiency
- Physics result for GERDA phase I: $T_{1/2}^{0\nu\beta\beta} > 2.1 \cdot 10^{25} yr$ @ 90% C.L.
- GERDA phase II will go beyond: Increase total detector mass & lower background index & Improved PSD

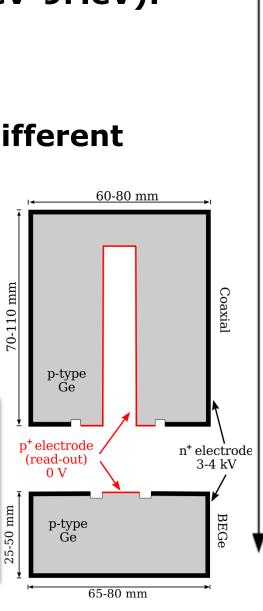
Backup Slides


⁴²K Background in GERDA

- ⁴²Ar: Isotope of Ar created by cosmic-ray activation
- Decay chain: ${}^{42}\text{Ar} \rightarrow {}^{42}\text{K} \rightarrow {}^{42}\text{Ca}$ $\xrightarrow{0^+ 32.9 \text{ y}}{\frac{42}{18}\text{Ar}} \xrightarrow{2^- 12.360 \text{ h}}{\frac{42}{42}\text{K}}$

 $Q_{g_{-}}600$

- ⁴²K ions get attracted by detector HV
- GERDA Phase I approach:
 Installation of mini-shroud
 Keen ione purply from dates
 - → Keep ions away from detectors


a-induced events in GERDA

- Range of α particles(4MeV-9MeV): 34 µm - 113 µm in Lar 14 µm - 41 µm in Ge
- Thickness of surface is different for p⁺ & n⁺ contacts.

p⁺(B) < 1 μm n⁺(Li) ~ 2 mm for coax n⁺(Li) ~ 1 mm for BEGe

α contributes to bkg. when the decays:

- on the p+ surface
- in LAr very close (<100 µm) to p+ surface
- in the groove)

Ra-226 ($E_a = 4.8$ MeV, $T_{1/2} = 1600 \text{ y}$ Rn-222 ($E_a = 5.5$ MeV, $T_{1/2} = 3.8 \text{ d}$ **Po-218** ($E_a = 6.0$ MeV, $T_{1/2} = 183 \text{ s}$ Pb-214 ($T_{1/2} = 0.45$ h) Bi-214 ($T_{1/2} = 0.33$ h) **Po-214** ($E_a = 7.7$ MeV, $T_{1/2} = 164 \ \mu s$ Pb-210 ($T_{1/2} = 22.3 \text{ y}$) Bi-210 ($T_{1/2} = 5.01 \text{ d}$) **Po-210** ($E_a = 5.3$ MeV, $T_{1/2} = 138.4 \text{ d}$ Pb-206 (stable)

13