Feasibility study for muon-induced neutrons in Shallow Underground Labs

Matteo Palermo

Deutschen Physikalischen Gesellschaft 2014 Mainz

On behalf of the GeDet group Max-Planck-Institut für Physik, München

24/03/2014

- > Feasibility Simulation Study:
 - > Reference measurement
 - > Setup description and results

- > Feasibility Simulation Study:
 - > Reference measurement
 - > Setup description and results

> Feasibility Simulation Study:

> Reference measurement

>Setup description and results

Outline

- > Feasibility Simulation Study:
 - > Reference measurement
 - > Setup description and results

Low Background Experiments

Particularly rare physics processes like:

- > Direct Dark Matter interaction
- > Neutrinoless Double Beta Decay
- Low Energy Neutrinos' interaction (solar, sterile neutrinos etc)
 - > Proton decay

Experiments have very small expected event rates!!
 (e.g. 0v2β decay < 0.1 events/(kg y))</pre>

They ALL need:

very low backgroundvery good detectors

Background Sources

- > Three different sources:
 - > Intrinsic detector radioactivity
 - > Environmental Natural radioactivity
 - > Cosmic Rays-induced showers
 (µ and V-induced)
- > Two different components: > Charged → easy to veto

> Neutral → high shielding power is required (neutron, gammas)

Cosmic Rays Shower

Production mechanism:

• Photodisintegration

24/03/2014

- > Feasibility Simulation Study:
 - > Reference measurement
 - > Setup description and results

24/03/2014

24/03/2014

24/03/2014

24/03/2014

24/03/2014

Matteo Palermo

3000

 $\Delta p \cdot \Delta q \ge \frac{1}{2} t$

> Feasibility Simulation Study:

> Reference measurement

>Setup description and results

24/03/2014

Energy Deposition in Ge

Efficiencies Results

	Efficiency (tot ev.: 1.92952e07 μ)	
n OUT from Lead	5.1x10 ⁻²	~ 1%
n OUT from Water	6.8x10 ⁻⁴	Water OK:
n IN @GeDet	4.0x10 ⁻⁴	-γenergy
2.2 γ OUT from Water	2.1x10 ⁻⁴	- thickness
2.2 γ IN @GeDet	1.1x10 ⁻⁴	
2.2 γ IN @GeDet after 1 ms	1.6x10 ⁻⁶	
2.2 γ Detected by GeDet	2.5x10 ⁻⁵	

Efficiencies Results

	Efficiency (tot ev.: 1.92952e07 μ)	
n OUT from Lead	5.1x10 ⁻²	
n OUT from Water	6.8x10 ⁻⁴	<pre>~ 60% hitting the detector</pre>
n IN @GeDet	4.0x10 ⁻⁴	
2.2 γ OUT from Water	2.1x10 ⁻⁴	
2.2 γ IN @GeDet	1.1x10 ⁻⁴	
2.2 γ IN @GeDet after 1 ms	1.6x10 ⁻⁶	
2.2 γ Detected by GeDet	2.5x10 ⁻⁵	

Efficiencies Results

	Efficiency (tot ev.: 1.92952e07 μ)	
n OUT from Lead	5.1x10 ⁻²	
n OUT from Water	6.8x10 ⁻⁴	
n IN @GeDet	4.0x10 ⁻⁴	
2.2 γ OUT from Water	2.1x10 ⁻⁴	
2.2 γ IN @GeDet	1.1x10 ⁻⁴	<pre>~ 1.5% => most γs arrive before 1 ms</pre>
2.2 γ IN @GeDet after 1 ms	1.6x10 ⁻⁶	
2.2 γ Detected by GeDet	2.5x10 ⁻⁵	

2.2 MeV Gamma (IN @ GeDet) Time Distribution

24/03/2014

Matteo Palermo

Outline

- > Feasibility Simulation Study:
 - > Reference measurement
 - > Setup description and results

- Summary:
 - Simple and relatively cheap setup
 - > Integrated 2.2 MeV gamma yield per muon DEPOSITING FULL energy into Ge-det ~ 2.5x10⁻⁵
 - > Desired muon flux ~ 6×10^{-3} cm⁻² s⁻¹ with a bkg level of ~ 5×10^{3} events/day ==> S/B ~ 10
- > Outlook:
 - > Prototype measurement above ground (1 ms time window)
 - > Find a proper shallow underground site
 - > Neutron flux bkg measurement
 - > Bkg in ROI in Ge measurement

24/03/2014

Courtesy of Prof. Zeng Zhi, Tsinghua University, Beijing

Efficiency Results

- > integrated 2.2MeV gamma yield per muon
 DEPOSITING FULL energy into Ge-det ~ 2.5x10⁻⁵
- > Estimated muon flux @ SUL(CJPL) ~ 7×10^{-5} cm⁻² s⁻¹
 - > For 100x50 cm² scintillator area ==> 0.35 Hz
 - > Assuming that are all energetic enough ==> 1 mu every ~3 s ==> 2 events every 3 days
 - => Not doable!!!
 - ==> Need ~ two order of magnitude higher flux

- [1] I. Abt, A.Caldwell. K. Kroeninger, J. Liu, X. Liu and B. Majorovits.
 "Neutron interactions as seen by a segmented germanium detector". Eur. Phys. J. A 36, 139-149 (2008).
- [2] T. Siiskonen, H. Toivonen.
 "A model for fitting peaks induced by fast neutrons in an HPGe detector". Nucl. Instrum. Meth. A 540 (2005) 403-411.
- [3] N. Jovancevic, M. Krmar, D. Mrda, J. Slivka and I. Bikit. "Neutron induced background gamma activity in low level GE-spectroscopy systems". Nucl. Instrum. Meth. A 612 (2010) 303-308.
- [4] K. W. Geiger, L. Van Der Zwan,
 "Radioactive neutron source spectra from Be(α,n)" Nucl. Inst. and Meth. 131 (1975) 315.
- [5] J. Ljungvall, J. Nyberg,

"A study of fast neutron interactions in high-purity germanium detectors" Nucl. Inst. and Meth. in Phy. Res. A 546 (2005) 553–573

Thank You for The Attention!

24/03/2014

Backup

Neutrons Interactions

Neutron

 \bigcirc

- > Elastic Scattering: $n + {}^A_Z N \rightarrow n' + {}^A_Z N$
- > Inelastic Scattering: $n + {}^A_Z N \to ({}^{A+1}_Z N)^* \to n' + {}^A_Z N + \gamma$ $n + {}^{A}_{Z} N \to ({}^{A+1}_{Z} N)^{*} \to n' + {}^{A}_{Z+1} N^{+} + e^{-}$
- > Thermal Capture: $n +_{Z}^{A} N \to_{Z}^{A+1} N + \gamma |_{\stackrel{\text{Neutron}}{\circ} \leftarrow \bullet}$
- > Transmutation: $n + {}^A_Z N \rightarrow {}^A_{Z-1} N + p$ $n + \stackrel{A}{Z} N \rightarrow \stackrel{A-3}{Z-2} N + \stackrel{4}{2} \alpha$
- > Fission:

$$n + {}^{A}_{Z} N \to {}^{A_{1}}_{Z_{1}} X + {}^{A_{2}}_{Z_{2}} Y + n$$

0

24/03/2014

Neutrons Interactions

> Inelastic Scattering:

> Thermal Capture:

24/03/2014

Matteo Palermo

Efficiency Results

- Integrated neutron yield per muon ~ 0.7x10⁻¹
 - > but on average ~ 3.4 neutrons/interaction ==> not every 10th muon produces neutrons

Efficiency Results

- Integrated neutron yield per muon ~ 0.7x10⁻¹
 - > but on average ~ 3.4 neutrons/interaction ==> not every 10th muon produces neutrons

Efficiencies Comparison

	Water Wall (tot ev.: 6.225e07 μ)	<mark>Cylindrical</mark> (tot ev.: 1.92952e07 μ)	
n OUT from Lead	7.0x10 ⁻²	5.1x10 ⁻²	
n OUT from Water	8.7x10 ⁻⁴	6.8x10 ⁻⁴	
			=> ~ 60 %
n IN @GeDet	1.2x10 ⁻⁵	4.0x10 ⁻⁴	=> ~ 2%
2.2 γ OUT from Water	1.9x10 ⁻³	2.1x10 ⁻⁴	
2.2 γ IN @GeDet	2.2x10 ⁻⁵	1.1x10 ⁻⁴	
2.2 γ IN @GeDet after 1 ms	3.2x10 ⁻⁷	1.6x10 ⁻⁶	
2.2 γ Detected by GeDet	5.6x10 ⁻⁶	2.5x10 ⁻⁵	

The Experimental Setup: eXtended Range GeDet

• Resolution: 2 keV @ 1.33 MeV

• p-type

- Peak/Compton 67:1
- Aluminum End Cup
- Copper Holder
- HV = +3000 V
- Charge sensitive pre-amp
- Diameter 6.9 cm
- Lenght 7.2 cm
- Outer electrode (n+) 0.6 mm
- Inner electrode (p+) 0.3 μ m

24/03/2014

- Lead:
 - thickness 10.5 cm
 - height 28 cm
- Copper shell:
 - Thickness 0.4 cm
- Scintillator paddles:
 - 12 x 21 x 2 cm^3
 - distance 48.5 cm
- •DAQ:
 - DGF Pixie-4 (high precision)
 - Sampling frequency 75 MHz
 - Spectra: 16-bit precision up to 32K channels

Additional plastic end-cup covered with black tape

- Lead:
 - thickness 10.5 cm
 - height 28 cm
- Copper shell:
 - Thickness 0.4 cm
- Scintillator paddles:
 - 12 x 21 x 2 cm^3
 - distance 48.5 cm
- •DAQ:
 - DGF Pixie-4 (high precision)
 - Sampling frequency 75 MHz
 - Spectra: 16-bit precision up to 32K channels

- Lead:
 - thickness 10.5 cm
 - height 28 cm
- Copper shell:
 - Thickness 0.4 cm
- Scintillator paddles:
 - 12 x 21 x 2 cm^3
 - distance 48.5 cm
- •DAQ:
 - DGF Pixie-4 (high precision)
 - Sampling frequency 75 MHz
 - Spectra: 16-bit precision up to 32K channels

- Lead:
 - thickness 10.5 cm
 - height 28 cm
- Copper shell:
 - Thickness 0.4 cm
- Scintillator paddles:
 - 12 x 21 x 2 cm^3
 - distance 48.5 cm
- •DAQ:
 - DGF Pixie-4 (high precision)
 - Sampling frequency 75 MHz
 - Spectra: 16-bit precision up to 32K channels

Pre-test Above Ground

 $\Delta p \cdot \Delta q \ge \frac{1}{2} t$

Allen Caldwell, Kevin Kröninger, Phys.Rev.D 74 (2006) 092003

Allen Caldwell, Kevin Kröninger, Phys.Rev.D 74 (2006) 092003

Simulation Info

- > Particle injected: mu+ and mu-
- > Muon spectrum: ground level starting from 1.897 GeV
- > Physics list used: qgsp_hadron_list
- > Muons generation plane == uppuermost scintilator surface
- > Shooting direction: vertical

OUTGOING Neutrons @ LEAD wall

Spatial distribution of the OUTCOMING NEUTRONS from LEAD (NORMALIZED per incident muon)

Spatial distribution of the OUTCOMING 2.2MeV GAMMAS from WATER (NORMALIZED per incident muon)

2.2 MeV Gamma (IN @ GeDet) Time Distribution

Matteo Palermo

Matteo Palermo

INCOMING 2.2 MeV Gammas into GeDet

Spatial distribution of the INCOMING 2.2MeV gammas in GeDet (NORMALIZED per incident muon)

24/03/2014

INCOMING 2.2 MeV Gammas into GeDet

24/03/2014

	Source	E_{α} Yi (MeV)		eld per 10 ⁶ alphas		Fractic $E_n < 1$.	Fraction with $E_n < 1.5 \text{ MeV}$		$E_{\mathbf{n}}$	
			This work	Maximum experimental	Y from eq. (7)	This work (%)	Literature (%)	This work (MeV)	Literature (MeV)	
	1	2	3	4	5	6	7	8	9	
	²⁴¹ Am–Be	5.48	82±8	70 ± 3^{18})	72	14±2	15 ²⁵) 23 ²¹)	4.46	3.9 ²⁷) 4.3 ²⁶)	
24/0	3/2014			Matt	eo Pale	rmo				

Germanium Detectors

Widely used in nuclear physics experiments and DM searches

> Concept:

- > Secmiconductor diodes with p- or n- structure
- > Reverse biasing
- > Sensitive to ionizing radiation
- > Depleted,sensitive thickness of several cm
 (for Si only mm)
- Cryogenic Temperatures

> Advantages:

- > Measurement of low levels of radioactivity
- > High gamma-ray detection efficiency
- > Excellent energy resolution (~keV)

Germanium Detectors

Detector configurations:

Planar

Point-contact

True-coaxial

> Electrode configurations for coaxial detectors:

Source: Med Phys 4R06/6R03 Radioisotopes and Radiation Methodology Chapter 8: "Hyper-Pure Germanium Detector"

Background Subtracted: 0-0.8 MeV

Fitted Energy	Fitted FWHM	Interaction type
$[\mathbf{keV}]$	$[\mathbf{keV}]$	
596.0 ± 0.1	0.6 ± 0.1	$^{74}Ge(n,n'\gamma)$
609.2 ± 0.2	1.0 ± 0.3	$^{74}Ge(n,n'\gamma)$

24/03/2014

Background Subtracted: 0-0.8 MeV

Fitted Energy	Fitted FWHM	Interaction type
$[{ m keV}]$	$[{ m keV}]$	
$691.8 \pm -$	-	$^{72}Ge(n,n'e)$
708.3 ± 0.2	0.7 ± 0.1	$^{35}Cl(n,\gamma)$
	Matteo Palermo	

24/03/2014

62

Background Subtracted: 1.5-2.5 MeV △p. △g≥źた Counts/h 2223.0 H-1 thermal 10³ 10³ 1H (2223.0) 10² 10² ൜൜ 10 2220 2240 2250 2210 2230 2200 Energy [keV] Fitted FWHM **Fitted Energy** Interaction type [keV][keV] $^{1}H(n,\gamma)$ $2223.0^* \pm 0.0$ 1.2 ± 0.0

FWHM vs Energy (Gain3 & Gain6, gausian+something)

Natural Germanium

Isotope	Atomic mass (m _a /u)	Natural abundance (atom %)
⁷⁰ Ge	69.9242497 (16)	20.84 (87)
⁷² Ge	71.9220789 (16)	27.54 (34)
⁷³ Ge	72.9234626 (16)	7.73 (5)
⁷⁴ Ge	73.9211774 (15)	36.28 (73)
⁷⁶ Ge	75.9214016 (17)	7.61 (38)

Peaks due to neutron interactions			
Fitted Energy	Fitted FWHM Interaction type		Threshold
$[\mathrm{keV}]$	[keV]		$[\mathrm{keV}]$
139.6 ± 0.0	0.6 ± 0.1	$^{74}Ge(n,\gamma^m)$	-
174.8 ± 0.1	0.5 ± 0.2	$^{70}Ge(n,n'\gamma)$?
198.3 ± 0.0	0.6 ± 0.0	$^{70}Ge(n,\gamma^m)$	121
326.0 ± 0.1	0.7 ± 0.1	$^{70}Ge(n,\gamma)$	
500.0 ± 0.1	0.7 ± 0.1	$^{70}Ge(n,\gamma)$	-
574.8 ± 0.4	0.7 ± 0.4	$^{74}Ge(n,\gamma)$	15.2
596.0 ± 0.1	0.6 ± 0.1	$^{74}Ge(n,n'\gamma)$?
609.2 ± 0.2	1.0 ± 0.3	$^{74}Ge(n,n'\gamma)$?
662.4 ± 0.1	0.7 ± 0.1	$^{140}Ce(n,\gamma)$	17.1
691.8 \pm -	2-1	$^{72}Ge(n,n'e)$?
708.3 ± 0.2	0.7 ± 0.1	$^{35}Cl(n,\gamma)$	-
831.6 ± 0.4	0.9 ± 0.4	$^{70}Ge(n,\gamma)$	-
$834.1 \pm -$	8-1	$^{72}Ge(n,n'\gamma)$?
843.9 ± 0.4	0.7 ± 0.3	$^{27}Al(n,n'\gamma)$?
846.9 ± 0.1	0.8 ± 0.1	${}^{56}Fe(n,n'\gamma)$?
868.2 ± 0.1	0.8 ± 0.2	$^{73}Ge(n,\gamma)$	-
962.0 ± 0.2	0.7 ± 0.2	${}^{63}Cu(n,n'\gamma)$?
1014.6 ± 0.3	0.9 ± 0.3	$^{27}Al(n,n'\gamma)$?
1096.8 ± 1.1	1.4 ± 0.4	$^{70}Ge(n,\gamma)$	-
1139.7 ± 0.4	0.9 ± 0.3	$^{70}Ge(n,\gamma)$	-
1165.0 ± 0.4	1.0 ± 0.4	$^{35}Cl(n,\gamma)$	-
1201.6 ± 0.1	0.8 ± 0.1	DEP of 2223.2	-
1204.4 ± 0.4	0.9 ± 0.4	$^{73}Ge(n,\gamma)$	-
1298.7 ± 0.3	0.8 ± 0.4	$^{70}Ge(n,\gamma)$	-
1327.2 ± 0.4	0.9 ± 0.4	$^{63}Cu(n,n'\gamma)$?
$1712.3^* \pm 0.1$	1.4 ± 0.1	SEP of 2223.2	-
$1778.8^* \pm 0.3$	1.0 ± 0.3	$^{27}Al(n,\gamma)$	-
$2223.0^* \pm 0.0$	1.2 ± 0.0	$^{1}H(n,\gamma)$	5
*These peaks where fitted on the gain 3 spectra.			

70

Inelastic Scattering Distribution

