Measurement of branching fractions and CP asymmetries of ${\rm B}\to\omega{\rm K}\,$ decays at Belle

Veronika Chobanova veronika@mpp.mpg.de

March 24th, 2014 Max-Planck-Institut für Physik

Physics Motivation

Measurement Principles

 ${\rm B} \rightarrow \omega {\rm K}~$ Measurement and Results

Outline

Physics Motivation

Measurement Principles

 $B \rightarrow \omega K$ Measurement and Results

Measurement of ϕ_1 : b \rightarrow sq \overline{q}

FCNC forbidden at tree level or tree CKM suppressed \Rightarrow penguin diagram dominates

- $S_{CP} = \sin 2\phi_1$, same as $b \to c\overline{c}s$
- · Penguin amplitudes highly sensitive to New Physics
- · Could be affected by a heavy unknown particle in the loop
- Measure branching fraction and CP violation parameters
- A deviation of these measurements from SM expectations will be an indication of New Physics

 0.68 ± 0.02

 0.59 ± 0.07

 0.72 ± 0.19

0.57 ± 0.17

0.45 ± 0.24 0.69 +0.10 -0.12

 0.48 ± 0.53

 0.20 ± 0.53

 -0.72 ± 0.71

0.97 +0.03

0.68 +0.09

 0.01 ± 0.33

 0.68 ± 0.07

1 1.2 1.4 1.6

0.74 +0.11

Measurement of ϕ_1 : b \rightarrow sq \overline{q}

Theory

Experiment

1.6 1.4 1.2 1 0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8

Ine	ory	$\sin(2\beta^{\rm eff}) \equiv \sin(2\phi_1^{\rm eff})$		
nep-ph/0707.1323	, hep-ph/0702252	b-ccs World Average ϕK^0 Average	 . ★-1	
Mode	${\cal S}_{CP}-\sin2\phi_1$	η' K ⁰ Average	*	
$B^0 \rightarrow \phi K^0_S$	0.02 ± 0.01	π ⁰ K ⁰ Average	⊢. →	
$B^0 o \eta' K^0_S$	0.01 ± 0.01	ρ ^o K _s Average	⊷ +	
$B^0 \rightarrow K^0_S K^0_S K^0_S$	$0.02^{+0.02}_{-0.03}$	ω K _s Average		
${\sf B}^0 o {\sf K}^0_{\sf S} \pi^0$	$0.07^{+0.05}_{-0.04}$	f ₂ K _s Average	*	
$B^0 o ho^0 K^0_S$	$-0.08^{+0.08}_{-0.12}$	f _x K _s Average	*	
${\sf B}^0 o \omega {\sf K}^0_{\sf S}$	0.13 ± 0.08	φ π ⁰ K _s Average	· - - ,	
$B^0 \rightarrow K^0_S \pi^0 \pi^0$	$0.03^{+0.02}_{-0.03}$	π ⁺ π' K _s N A verage	-	
$B^0 \rightarrow K^+ K^- K^0_S$	$0.03_{-0.03}^{+0.02}$	K¥K K ⁰ Average t _⊻ Average		
		had a set of the set o	and a second second at the second	

Predicted in SM to have higher *CP* asymmetries than $b \rightarrow sq\overline{q}$ But most $b \rightarrow sq\overline{q}$ measurements at or below $b \rightarrow c\overline{c}s$ measurements More experimental precision required

Outline

Physics Motivation

Measurement Principles

 $B \rightarrow \omega K$ Measurement and Results

KEKB Accelerator

Belle Detector

Measurement Principles at Belle

 $m_{\Upsilon(4S)} = 10.58 \,\mathrm{GeV/c^2}$ $\approx 2 \times m_\mathrm{B}$ $m_\mathrm{B} = 5.28 \,\mathrm{GeV/c^2}$

$$\begin{split} &\Upsilon(4S) \text{ resonance decays almost} \\ &\text{exclusively into a } B\overline{B} \text{ pair} \\ &\Upsilon(4S): \ J^P = 1^- \\ &\text{B: } \ J^P = 0^- \end{split}$$

- \Rightarrow B meson pair in a p-wave \Rightarrow asymmetric wave function
- \Rightarrow B mesons must have opposite flavour

 $\mathsf{B}\overline{\mathsf{B}}$ pair coherent

CP Violation in the B Meson System

Time-dependent CP asymmetry

$$a_{CP}(\Delta t, f_{CP}) = \frac{N_{\overline{B}0}(\Delta t, f_{CP}) - N_{B^0}(\Delta t, f_{CP})}{N_{\overline{B}0}(\Delta t, f_{CP}) + N_{B^0}(\Delta t, f_{CP})} = \mathcal{A}_{CP} \cos(\Delta m \Delta t) + \mathcal{S}_{CP} \sin(\Delta m \Delta t)$$

 $\begin{array}{l} \mathcal{A}_{CP} \colon \text{measure for the direct } CP \text{ violation} \\ B^0 \to f_{CP} \neq \overline{B}^0 \to f_{CP} \end{array}$

 S_{CP} : measure for the mixing induced *CPV* $B^0 \rightarrow \overline{B}^0 \rightarrow f_{CP} \neq \overline{B}^0 \rightarrow B^0 \rightarrow f_{CP}$

B^0 or $\overline{B}{}^0$?

 \rightarrow Look at the other *B* (tag-side):

Search for flavour-specific decays on the tag side

 \Rightarrow Flavour of the B of interest opposite to the tag side B

Δt measurement

Asymmetric beam energies \Rightarrow Boost of the CMS Measurement of $\Delta z \sim 100 \,\mu\text{m}$ instead of $\Delta t \sim \text{ps}$ Obtain $\Delta t = \Delta z / c \langle \beta \gamma \rangle$

Outline

Physics Motivation

Measurement Principles

${\rm B} \rightarrow \omega {\rm K}~$ Measurement and Results

Measurement of ϕ_1 : $B \rightarrow \omega K$

My PhD thesis

The final measurement of $B\to\omega K$ with the full data set of Belle 772×10^6 $B\overline{B}$ pairs

Challenging analysis

- $\mathcal{BR}(B \rightarrow \omega K) \sim 10^{-6} \text{ (small)}$
- Large background contribution from $q\overline{q}$ (u,d,s,c) background

	${\sf B^0} o \omega {\sf K^0_S}$	${\sf B}^+ o \omega {\sf K}^+$
signal	pprox 240	pprox 1150
$q\overline{q}(q=u,d,s,c) \; BG$	pprox 17000	pprox 85000
BB BG	pprox 360	pprox 1700

Measurement of $B \rightarrow \omega K$

Measurement of the branching fraction and CP parameters of $B\to\omega K$ with the full Belle data set ot $772\times 10^6~B\overline{B}$ pairs

Our method

- Use loose cuts on the observables for maximum signal sensitivity
- Blind analysis: Base signal and background models entirely on MC and sideband (a region in M_{bc} and ΔE next to the signal region, where only $q\bar{q}$ is found)
- A simultaneous fit to $B^0 \to \omega K_S^0$ and what otherwise would be its control sample $(B^+ \to \omega K^+)$ to obtain the correction factors on the kinematic variables directly from the fit and with this to reduce the systematic uncertainties
- First attempt at Belle to fit two decay channels simultaneously

Measurement of ϕ_1 : $B^0 \rightarrow \omega K^0_S$

Black font: previous measurements Blue font: Full Belle data set of 772×10^6 B \overline{B} pairs

	$B\overline{B}$ -pairs	${\cal BR}({\sf B^0} o \omega {\sf K^0})$	\mathcal{A}_{CP}	\mathcal{S}_{CP}
Belle	$388 imes 10^6$	$(4.4^{+0.8}_{-0.7}\pm0.4) imes10^{-6}$	-	-
Belle	535×10^{6}	-	$-0.09 \pm 0.29 \pm 0.06$	$0.11 \pm 0.46 \pm 0.07$
BaBar	467×10^6	$(5.4\pm 0.8\pm 0.3)\times 10^{-6}$	$0.52^{+0.22}_{-0.20}\pm0.03$	$0.55^{+0.26}_{-0.29}\pm0.02$
Belle	772×10^{6}	$(4.5\pm 0.4\pm 0.3)\times 10^{-6}$	$-0.36 \pm 0.19 \pm 0.05$	$0.91 \pm 0.32 \pm 0.05$

	$B\overline{B}$ -pairs	${\cal BR}({\sf B}^+ o \omega {\sf K}^+)$	\mathcal{A}_{CP}
Belle	388×10^6	$(8.1\pm 0.6\pm 0.6)\times 10^{-6}$	$0.05^{+0.08}_{-0.07}\pm0.01$
BaBar	$383\times\mathbf{10^{6}}$	$(6.3\pm 0.5\pm 0.3)\times 10^{-6}$	$-0.01 \pm 0.07 \pm 0.01$
Belle	772×10^{6}	$(6.8\pm0.4\pm0.4) imes10^{-6}$	$-0.03 \pm 0.04 \pm 0.01$

Paper submitted to PRD, in review; arXiv 1311.6666

Measurement of ϕ_1 : $B^0 \rightarrow \omega K^0_S$

Clear asymmetry can be seen in the difference between the B^0 and $\overline{B}{}^0$ distributions

ruled out by 3.1 standard deviations

Conclusion

- ϕ_1 is the most precisely measured parameter of the B unitarity triangle
- ϕ_1 accessible in penguin-dominated decays, sensitive to New Physics
- Measurement of ${\rm B}\to\omega{\rm K}~$ with the full Belle data set finished, in review at PRD
- So far, measurements of the unitarity triangle consistent with the Standard Model prediction but with huge uncertainties
- More precise theoretical calculations and measurements needed to challenge the Standard Model

Thank you for your attention