Standard Model Tests with Top Quarks

‡ Fermilab

Marc-André Pleier University of Bonn

Alexander von Humboldt Stiftung/Foundation

Introduction Top Quark production in hadron collisions Top Quark detection Selected measurements Outlook

MPI for Physics Colloquium, 18.11.2008

The discovery of the Top Quark

Top is massive: m_t =176 ± 13 GeV
Short lifetime τ ≈ 5 ·10⁻²⁵s => no hadron formation!
Is this really the Standard Model Top Quark???

Where can we study Top Quarks?

The Tevatron @ Fermilab

The experimental challenge

Highest energies are reached by hadron colliders. BUT: collision of composite particles!

The Tevatron Collider Experiments

Multi-purpose collider detectors:

•14 countries,
•59 institutions,
•~600 physicists

18 countries,
82 institutions,
~550 physicists

The DZero Detector

• Excellent calorimetry

$$\frac{\sigma_E}{E} = \frac{15\%}{\sqrt{E}} \oplus 0.3\% \text{ (elm)}, \frac{\sigma_E}{E} = \frac{45\%}{\sqrt{E}} \oplus 4\% \text{ (had)}$$

• Large muon acceptance

Marc-André Pleier

Central tracking inside 2 T solenoid

 Silicon vertex detector (=>b-jet ID)
 Scintillating fiber tracker

7/36

A Top event in the DZero detector

Top Quark Production & Decay

• Main **production** of Top Quarks – via strong interaction in *pairs*:

<u>Theoretical expectation:</u> $\sigma_{t\bar{t}} = (6.6^{+0.7}_{-0.8}) \text{ pb}$

Cacciari et al., JHEP0809, 127, m_t=175 GeV

• SM Top decay $\approx 100\%$ Wb \Rightarrow Final states determined by W decay mode $\overrightarrow{tt} \text{ decay modes} \Rightarrow 2 \text{ h}_{i} \text{ jets}$

 \Rightarrow 2 b-jets

- \Rightarrow Up to two charged leptons/neutrinos
- \Rightarrow Up to four additional jets

Need to reconstruct/identify:

- Electrons, muons, taus
- Missing transverse energy,
- Jets/b-jets

Important Measurements

180

w

200

220

240

+

Marc-André Pleier

13/36

Classification of Top Quark pair events

Marc-André Pleier

Main backgrounds

Electroweak W production: $\gg W \rightarrow \ell + \nu_{\ell}$ \gg additional \geq 3 jets from gluon radiation \rightarrow use Monte Carlo simulation

Multijet production with fake lepton, MET:
➢ Electrons faked by (electromagnetic) jets
➢ Muon-fakes: real muons, fakely isolated (eg. from semileptonic b-decays, with non-reconstructed b-jet)
➢ misreconstructed MET

 \rightarrow use data to model properly

$t\bar{t} \rightarrow \mu + jets$ candidate event U SV mip signal **Jet** 3 in calorimeter TP MTC *Jet 2* 1 mm [·] Jet 5 **Jet 1** ÍP Jet 4 SV $\tau_{\rm B} \approx 1.5 \text{ ps} \Rightarrow \beta \gamma c \tau > mm$ 1 mm

Lifetime b-tagging at DØ

(dca = distance of closest approach)

- Separate *b*-jets from light-quark and gluon jets ⇒ reject most multijet & W+jets background processes
- $\tau_B \approx 1.5 \text{ ps} \Rightarrow \beta \gamma c \tau > mm$
- Neural network based on impact parameter and reconstructed vertex information
- "Tagging" efficiencies:
 - -b-jet $\approx 50\%$ -c-jet $\approx 10\%$ light-jet $\approx 0.5\%$

Top Quark Pair Production: Lepton+Jets channels

•Use two complementary methods for signal extraction: b-tagging and kinematic LH •4 (8) channels: e/μ +jets (including leptonic τ decays), $3/\ge 4$ jets, $(1/\ge 2 \text{ b-tags})$

(m_t=175 GeV, PRL **100**, 192004, 2008)

Top Quark Pair Production: cross sections

Simultaneous measurement of σ_{ttbar} and *R*

SM: top decay rate
$$\propto |V_{tq}|^2$$
 – study ratio of branching fractions:

$$R = \frac{B(t \to Wb)}{B(t \to Wq)} = \frac{|V_{tb}|^2}{|V_{tb}|^2 + |V_{ts}|^2 + |V_{td}|^2} \xrightarrow{\mathbf{t} \to \mathbf{b}, \mathbf{s}, \mathbf{d}}$$

•Measure σ_{ttbar} and R simultaneously via tagging prob. •No assumption of $B(t \rightarrow Wb) = 1$ •Higher precision on R,σ : different sensitivity to syst. $R = 0.97^{+0.09}_{-0.08} (stat + syst)$ (PRL 100, 192003, 2008) $\sigma_{t\bar{t}} = 8.18^{+0.90}_{-0.84} (stat + syst) \pm 0.50 (lumi) pb$ $_{0.9 \text{ fb}^{-1} \text{ 1+jets dataset}} \text{ for } m_t = 175 \text{ GeV}}$ R > 0.79 @ 95% C.L.

to date!

 $|V_{tb}| > 0.89 @ 95\%$ C.L. (3x3 unitary CKM matrix)

W Helicity in top decay

Standard Model top decay: V-A interaction (like for all fermions)

 \Rightarrow Measure angular distribution of charged lepton wrt. top in W rest frame: $\cos\theta^*$

W Helicity in top decay

So far consistent with Standard Model expectation.

Top Quark Mass Measurements

Many Methods exist - general features:

- •Measure observable sensitive to Top mass
- •Map partons to reconstructed objects (combinatorics!)
- •Calibrate with pseudo-experiments
- •Obtain mass via maximum likelihood

Need to relate the reconstructed calorimeter jets back to parton level: Jet Energy Scale is crucial!

Top events: W boson decay products allow for additional **in-situ jet energy calibration**

Top Quark Mass Measurements: Matrix Element Method

Matrix Element Method: yields so far most precise measurements
Use four-vectors of reconstructed objects to calculate per event probability density for being signal/background as function of m_t
Maximises use of information on the event, but CPU intense calculations
Product of event probabilities allows to extract the most likely mass value:

Tevatron Top Quark Mass

Top Quark Mass and SM Higgs

•radiative corrections on the W mass allow constraints on Higgs mass from m_w, m_t

Marc-André Pleier

Single Top Quark Production

Single Top production (EW interaction):

• s-channel ("tb"):
$$\sigma_s = (0.88^{+0.07}_{-0.06})$$
 pb

Why measure this?

σ(*tb*, *tqb*) ∝ |V_{tb}|²
Test unitarity of CKM matrix
Sensitive to new physics: Resonances? FCNC?

- (Theoretical expectation from Z. Sullivan, PRD **70**, 114012 (2004), $m_t=175 \text{ GeV}$)
- t-channel ("tqb"): $\sigma_t = (1.98^{+0.23}_{-0.18}) \text{ pb}$

The CKM Matrix

What do we know about V_{tb} ? Within Standard Model framework: •3 generations •unitarity of CKM matrix $V_{tb} = 0.999100^{+0.000034}_{-0.00004}$

More than 3 generations $(V_{td}^2 + V_{ts}^2 + V_{tb}^2 < 1)$: 0.07 <V_{tb}<0.993 (90% CL) Direct measurement only via single Top production!

Single Top selection

signature: similar to tī l+jets, but lower jet-multiplicity ⇒ **b-tagging**! <u>background:</u> W+jets, tī, bb, multijets faking leptons ⇒ <u>Look at 12 analysis channels</u>: e/μ , 1/2 tags, 2/3/4 jets

	Event Yields in 0.9 fb ⁻¹ Data Electron+muon, 1tag+2tags combined		
Source	2 jets	3 jets	4 jets
tb	16 ± 3	8 ± 2	2 ± 1
tqb	20 ± 4	12 ± 3	4 ± 1
$t\bar{t} \rightarrow $	39 ± 9	32 ± 7	11 ± 3
$t\bar{t} \rightarrow /+$ jets	20 ± 5	103 ± 25	143 ± 33
W+bb	261 ± 55	120 ± 24	35 ± 7
W+cc̄	151 ± 31	85 ± 17	23 ± 5
W+jj	119 ± 25	43 ± 9	12 ± 2
Multijets	95 ± 19	77 ± 15	29 ± 6
Total background	686±41	460±39	253±38
Data	697	455	246

Single Top signal is smaller than total background uncertainty!

Cut & count events not sensitive enough! (S:B from 1:10 to 1:40)

Use multivariate discriminants to separate signal/background: University of Bonn

Single Top analysis methods

Make sure that backgrounds are well modelled: low discriminant region, signal depleted (cuts)

Make sure machinery is well understood and calibrated: ensemble tests

Single Top cross section results

comparison & combination of methods:

Decision Tree result (most significant) :

Single Top cross section results

CDF and DØ tb+tqb Cross Section

|V_{tb}| measurement

Using Decision Tree result, assuming: $V_{td}^2 + V_{ts}^2 \ll V_{tb}^2$ and • pure V-A and CP-conserving Wtb interaction, anomalous strength allowed

 $0.9 \, \text{fb}^{-1}$ DØ Run II preliminary **Posterior Probability Density** $|V_{tb}f_{l}^{L}| = 1.3 \pm 0.2$ 0.7 $|V_{tb}f_l^L|^2$ 0.6 $= 1.7^{+0.6}_{-0.5}$ 0.5 0.4 0.3 $0.68 < |V_{tb}| \le 1$ at 95% C.L. 0.2 (assuming V-A coupling strength $f_l^L = 1$) 3.5 0.5 2.0 2.5 3.0 1.0 1.5 4.0 Latest CDF ME analysis (2.7 fb⁻¹): $|V_{tb}f_1^L|^2$ $|V_{tb}| > 0.71$

No assumption needed on the number of fermion families or the unitarity of the CKM matrix for the first time!

Summary

Entered era of precision measurements: mass, cross-section – understand systematics!
Still lots to learn about the Top Quark – some properties just become measurable @ Tevatron
Impressive progress in analysis techniques
Top is ideal probe for "New Physics"
So far: good agreement with Standard Model
There's still plenty room for surprises...

More measurements / information available online:

•M.-A. Pleier, arXiv:0810.5226v1

"Review of Top Quark Properties Measurements at the Tevatron"

http://www-d0.fnal.gov/Run2Physics/top/top_public_web_pages/

• <u>http://www-cdf.fnal.gov/physics/new/top/top.html</u>

Outlook

Marc-André Pleier