Università degli Studi di Milano-Bicocca Dipartimento di Fisica G. Occhialini

Bolometric measurement of Molybdenum half-life

Nahuel Ferreiro Iachellini

Rare transition among isobaric elements:

$$(A, Z) \Longrightarrow (A, Z \pm 2)$$

• 2ν DBD: useful for testing nuclear models

$$\frac{1}{T_{1/2}^{2\nu}} = G^{2\nu}(Q,Z)|M^{2\nu}|^2$$

 $G^{2
u}(Q,Z) \Rightarrow$ phase space of outgoing leptons $M^{2
u} \Rightarrow$ Nuclear Matrix Element

 0\nuDBD: fundamental physics, if observed would prove the Majorana nature of neutrinos.

The measurement of $T_{1/2}^{0\nu}$ would be a measurement of neutrino mass.

Large half-lives $T_{1/2} \approx 10^{18} - 10^{21}$ years.

- Only emitters for which the single beta decay is forbidden are under study.
- Due to the rarity of the process high sensitive detectors are required
- Sensitivity for spotting 0*v*DBD peak over a background *B*

$$S^{0\nu} = \log 2T \epsilon \frac{N_{\beta\beta}}{n_B} \propto \epsilon \sqrt{\frac{MT}{B\Delta}}$$

Detectors which convert the released energy into heat

Components:

- Absorber: detector's active volume. The interaction causes its warm-up.
- Thermal link which keeps a constant working temperature.
- Thermal sensor: sensor which convert the thermal pulse into an electric one.

Particle interactions cause the pulse formation

$$\Delta T(t) = rac{E}{C} e^{-rac{t}{ au}} \qquad au = C/G$$

- C contributions: lattice, electronic and magnetic. The choice of dielectric-diamagnetic absorbers makes the lattice contribution the only effective at very low temperature.
- Debye law: $C \sim (T/\Theta_D)^3$ $T \ll \Theta_D$, High resolution at low T
- The absorbers may contain the source \Rightarrow high efficiency.
- Absorbers mass up to \sim kg. Bolometers can be made of many absorbers, up to \sim 1ton \Rightarrow high sensitivity
- $\tau \sim 1s$: slow detectors.

Double read-out: heat signal and light signal

- A small fraction of the released energy is emitted as photons.
- Due to distinct specific energy-loss this fraction is different for α and β/γ radiations.
- α-events rejection allows to increase the sensitivity.
- In scintillating crystals this event discrimination is possibile by studying the (thermal) pulse shape.

Experimental setup - Crystals

I arranged up three crystals made of $\rm ZnMoO_4$ as bolometers

Preparation:

- Surface cleaning
- Gluing of thermal sensors and heaters
- Mounting in copper frame
- Wiring
- No light detectors, I totally relied on pulse shape discrimination

Crystal	Mass (g)	DBD Emitters ^{100}Mo
$\rm ZnMoO_4 - 1$	235.2 ± 0.1	$(6.056 \pm 0.003) imes 10^{22}$
${\rm ZnMoO_4-2}$	247.0 ± 0.1	$(6.360 \pm 0.003) imes 10^{22}$
${\rm ZnMoO}_4-3$	328.8 ± 0.1	$(8.467 \pm 0.003) imes 10^{22}$

Experimental setup - Polarization circuit

The thermal pulse is converted into a tension pulse

 $R_{bol} \Rightarrow$ Thermal sensor $R_L \Rightarrow$ Load resistance $V_{BIAS} \Rightarrow$ Tunable voltage $V_{bol} \Rightarrow$ Sampled signal

$$R_L \gg R_{bol} \Rightarrow I_{bol} \approx \text{const}$$

 $\frac{\mathrm{d}R}{R} = A \frac{\mathrm{d}T}{T}$

$$\Delta V_{bol} pprox rac{\Delta E}{CT} A \sqrt{PR_{bol}}$$

I applied many manipulation to the raw data in order to optimize the detector performance

- Optimum Filter: transfert function which maximizes the signal-to-noise ratio
- Stabilization: pulses amplitudes are corrected respect to thermal fluctuations
- Calibration
- Pulse shape analysis: since we are interested in the study of a continuum energy spectrum, I implemented a method to select "good" events with an energy-constant efficiency

Shape cuts

During 36.5 days of measurement some recorded events are to be rejected because due to not-properly shaped pulses, noise, pile-ups... The rejection (cut) directly affects the detection efficiency and thus the half-life calculation

• "box" cuts \Rightarrow energy-dependent efficiency

Pulse shape linearization:

$$\hat{p}_j = rac{p(E_j) - ar{p}(E_j)}{sigma(E_j)}$$
 \hat{p}_j E-independent

Nahuel Ferreiro lachellini

Milano-Bicocca

Shape cuts

Thanks to linearized shape parameters non-particle patterns are easily spotted

The number of $2\nu \text{DBD}$ disintegration is computed by reconstructing the entire background

- The geometry has been simulated with Geant
- Background contributions (simulated):
 - $\blacksquare~^{65}{\rm Zn}$ inside crystals
 - $\blacksquare \ ^{210} Pb\text{-}^{210} Bi$ both as internal and external contamination
 - $\blacksquare\ ^{208}{\rm Tl}$ external contamination due to $^{232}{\rm Th}$ in materials facing the detectors
 - $\hfill \ensuremath{\,{}^{40}{\rm K}}$ both internal and external due to environmental radioactivity
- Measured spectra have been split in single-crystal and double-crystal events
- I overlapped the simulated spectrum to the measured one by means of likelihood maximization

$bkg = 2\nu + {}^{208}Tl + {}^{40}K + {}^{65}Zn + {}^{210}Pb - {}^{210}Bi$

$$T_{1/2}^{2\nu}$$

First bolometric measurement of $^{100}\mathrm{Mo}$ half-life:

$$T_{1/2}^{2
u} = (7.15\pm 0.37(\textit{stat})\pm 0.66(\textit{syst})) imes 10^{18}$$
 years

In agreement with the result obtained by NEMO¹ (the most accurate avaiable):

$$T_{1/2}^{2
u} = (7.11 \pm 0.02(\textit{stat}) \pm 0.54(\textit{syst})) imes 10^{18}$$
 years

 $^1\mathsf{R}.$ Arnold *et al.*, First results of the search of neutrinoless double beta decay with the NEMO 3 detector, Phys.Rev.Lett. 2005

Nahuel Ferreiro Iachellini

Only one crystal showed the capability to discriminate α events by pulse shape.

I used this to calculate the sensitivity of an experiment based on 10Kg of $\rm ZnMoO_4$ with α rejection for 1 year exposure (CL 68%)

$$T_{1/2}^{0
u} > 1.14 imes 10^{24}$$
 years

A pure bolometric result would be

$$T_{1/2}^{0
u} > 6.5 imes 10^{23}$$
 years

- Independent confirmation of NEMO result with natural Mo (no enrichment!)
- Proved that $ZnMoO_4$ crystals allow α -background rejection by means of pulse shape discrimination (though it requires further studies)