MHV amplitudes 0 00000 One gluon emission in DY

P

Conclusions

Next-eikonal approximation in the context of spinor helicity methods

Davide Melini

Supervisors: Eric Laenen, Giovanni Ridolfi

28th IMPRS Workshop

MHV amplitudes 0 00000 One gluon emission in DY

Conclusions

Motivations

• Eikonal (E) and Next-to-eikonal (NE) exponentiation $M = M^0 e^{M_E + M_{NE}} (1 + M_r) + \mathbf{O}(NNE)$

E and NE approximation for propagators

$$rac{1}{(p+q)^2} pprox rac{1}{2pq} - rac{q^2}{(2pq)^2} + \mathbf{O}(NNE)$$

 Helicity spinor methods are an efficient way to compute cross sections.

Let's use both!

MHV amplitudes 0 00000 One gluon emission in DY

Conclusions

Motivations

• Eikonal (E) and Next-to-eikonal (NE) exponentiation $M = M^0 e^{M_E + M_{NE}} (1 + M_r) + \mathbf{O}(NNE)$

E and NE approximation for propagators

$$rac{1}{(p+q)^2} pprox rac{1}{2pq} - rac{q^2}{(2pq)^2} + \mathbf{O}(NNE)$$

 Helicity spinor methods are an efficient way to compute cross sections.

Let's use both!

MHV amplitudes

One gluon emission in DY

イロト イポト イヨト イヨト

Conclusions

MQ (P

Introduction

Only take into account massless particles *spinors*

$$ar{u}_{\pm}(ec{
ho}) = ar{v}_{\mp}(ec{
ho}) := \langle
ho, \pm \mid \ u_{\pm}(ec{
ho}) = v_{\mp}(ec{
ho}) := \mid
ho, \pm
angle$$

spinor products

$$ar{u}_-(ec{p})u_+(ec{k}) = \langle p - |k+
angle := \langle pk
angle$$

 $ar{u}_+(ec{p})u_-(ec{k}) = \langle p + |k-
angle := [pk]$

$$\langle {\it pk}
angle = e^{i \phi_{{\it pk}}} \sqrt{2 {\it pk}}$$

Goal \rightarrow write everything in terms of spinor products!

MHV amplitudes

One gluon emission in DY

(日) (同) (三) (三)

Conclusions

MQ (P

Introduction

Only take into account massless particles *spinors*

$$ar{u}_{\pm}(ec{
ho}) = ar{v}_{\mp}(ec{
ho}) := \langle
ho, \pm \mid \ u_{\pm}(ec{
ho}) = v_{\mp}(ec{
ho}) := \mid
ho, \pm
angle$$

spinor products

$$ar{u}_{-}(ec{p})u_{+}(ec{k})=\langle p-er{k}+
angle:=\langle pk
angle\ ar{u}_{+}(ec{p})u_{-}(ec{k})=\langle p+er{k}-
angle:=[pk]$$

$$\langle pk
angle = e^{i \phi_{pk}} \sqrt{2pk}$$

Goal \rightarrow write everything in terms of spinor products!

Introduction	MHV amplitudes	One gluon emission in DY	Conclusions
0000	0 00000	0000 000	
Introduction			

fermion propagators

$$k = |k+\rangle\langle k+|+|k-\rangle\langle k-|$$

polarization vectors

$$\left[\epsilon_{\pm}(p)^{\mu}
ight]^{*} := \epsilon_{\pm}(p, p_{ref}) = \pm rac{\langle p \pm |\gamma^{\mu}| \, p_{ref} \pm
angle}{\sqrt{2} \langle p \mp | p_{ref} \pm
angle}$$

slashed polarization vectors

$${{}^{\!\!\!\!/}_{\!\!\!\!\!\!\!/}}_{\pm}(k,q)=rac{\pm\sqrt{2}}{\langle k\mp|q\pm
angle}\Big(|k\mp
angle\langle q\mp|+|q\pm
angle\langle k\pm|\Big)$$

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶

Э

All outgoing momenta

$$M(p_1+, p_2-, q_1+, q_2-) = \frac{\langle p_2 q_2 \rangle^2}{\langle p_1 p_2 \rangle [q_1 q_2]}$$

Parity and Charge coniugation connect different cross sections

$$P[\langle pk \rangle] = [pk] \qquad \qquad C[\langle pk \rangle] = -[pk]$$

Introduction	MHV amplitudes	One gluon emission in DY	Conclusions
000●	0	0000	
Introduction			

If
$$\vec{p} \parallel z$$
-axis

$$| k \pm \rangle = \sqrt{\frac{E_k}{E_p}} \left[\cos \frac{\theta}{2} \mathbf{1} + \sin \frac{\theta}{2} \gamma^1 \gamma^3 \right] | p \pm \rangle$$

◆ロ > ◆母 > ◆臣 > ◆臣 >

- ▶ collinear limit → $| k\pm \rangle = \sqrt{\frac{E_k}{E_p}} | p\pm \rangle$
- soft (eikonal)limit $\rightarrow \mid k \pm \rangle = 0$
- soft (next-to-eikonal) limit \rightarrow keep all the terms

Introduction	MHV amplitudes	One gluon emission in DY	Conclusions
000●	0	0000	
Introduction			

If
$$\vec{p} \parallel z$$
-axis

$$| k \pm \rangle = \sqrt{\frac{E_k}{E_p}} \left[\cos \frac{\theta}{2} \mathbf{1} + \sin \frac{\theta}{2} \gamma^1 \gamma^3 \right] | p \pm \rangle$$

イロト イポト イヨト イヨト

• collinear limit $\rightarrow | k \pm \rangle = \sqrt{\frac{E_k}{E_p}} | p \pm \rangle$

- soft (eikonal)limit ightarrow | $k\pm
 angle=0$
- soft (next-to-eikonal) limit \rightarrow keep all the terms

MHV amplitudes

One gluon emission in DY

A ► < 3

Conclusions

Gluon scattering and MHV amplitudes

Introduction 0000	MHV amplitudes	One gluon emission in DY 0000 000	Conclusions
Color decomposition in gluon sc	attering		

At tree level:

$$A_n^{tree}(p_i, \lambda_i, a_i) = g^{n-2} \sum_{\sigma \in \frac{S_n}{Z_n}} Tr(t^{a_{\sigma(1)}} t^{a_{\sigma(2)}} \dots t^{a_{\sigma(n)}}) \cdot A_n(\sigma(1^{\lambda_1}), \dots \sigma(n^{\lambda_n}))$$

Colour is stripped off the amplitude, use colorless Feynman rules to compute color ordered amplitudes.

Goal: calculating E and NE corrections to color ordered amplitudes .

伺い イラト イラト

Introduction	MHV amplitudes	One gluon emission in DY	Conclusions
0000	0	0000	
	•0000	000	
Simplest results			

$$A^{tree}_{n}(1^+,\ldots,\ldots,n^+)=0$$

< ロ > < 同 > < 臣 > < 臣 > -

E

590

Introduction	MHV amplitudes	One gluon emission in DY	Conclusions
0000	0 0●000	0000	
Simplest results			

$$A^{tree}{}_{n}(1^{+},\ldots,\ldots,n^{+}) = 0$$

 $A^{tree}{}_{n}(1^{+},\ldots,i^{-},\ldots,n^{+}) = 0$

<ロト <回ト < 回ト < 回ト

E

590

Introduction	MHV amplitudes	One gluon emission in DY	Conclusions
0000	00000	0000	
Simplest results			

$$A^{tree}{}_{n}(1^{+},\ldots,\ldots,n^{+}) = 0$$

 $A^{tree}{}_{n}(1^{+},\ldots,i^{-},\ldots,n^{+}) = 0$

$$A^{tree MHV}_{n}(1^+,\ldots,i^-,\ldots,j^-,\ldots,n^+) = i \frac{\langle ij \rangle^4}{\langle 12 \rangle \langle 23 \rangle \cdots \langle n-1,n \rangle \langle n1 \rangle}$$

・ロト ・部 ト ・ヨト ・ヨト

E

Introduction	MHV amplitudes	One gluon emission in DY	Conclusions
0000	0 00000	0000	
Simplest results			

▶ Plus-helicity soft gluon →factorization (E level)

$$A^{tree MHV}_{n} \left(1^+, \dots, j^-, \dots, (i-1)^+, i^+, (i+1)^+, \dots, k^-, \dots, n^+\right) =$$

$$= \frac{\langle i-1, i+1 \rangle}{\langle i, i-1 \rangle \langle i, i+1 \rangle} \cdot A^{tree MHV}_{n-1} \left(1^+, \dots j^- \dots, (i-1)^+, (i+1)^+ \dots, k^-, \dots, n^+\right)$$

factor is purely eikonal, no NE contributions

▶ Negative-helicity soft gluon → no NE contributions

Numerator is at NNE level , $\langle ij \rangle^4 = \mathfrak{o}(\lambda^2)$

イロト イポト イヨト イヨト

Introduction	MHV amplitudes	One gluon emission in DY	Conclusions
0000	0 00000	0000	
Simplest results			

▶ Plus-helicity soft gluon →factorization (E level)

$$A^{tree\,MHV}_{n}\left(1^{+},\ldots j^{-}\ldots,(i-1)^{+},i^{+},(i+1)^{+}\ldots,k^{-},\ldots,n^{+}\right)=$$

$$= \frac{\langle i-1, i+1 \rangle}{\langle i, i-1 \rangle \langle i, i+1 \rangle} \cdot A^{tree MHV}_{n-1} \left(1^+, \dots j^- \dots, (i-1)^+, (i+1)^+ \dots, k^-, \dots, n^+\right)$$

factor is purely eikonal, no NE contributions

► Negative-helicity soft gluon → no NE contributions

Numerator is at NNE level ,
$$\langle ij \rangle^4 = \mathfrak{o}(\lambda^2)$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Introduction	MHV amplitudes	One gluon emission in DY	Conclusions
0000	0 00000	0000	
Simplest results			

 \blacktriangleright 4-gluon scattering \rightarrow three independent amplitude

$$A(1\pm,2+,3+,4+) = 0$$
$$A(1-,2-,3+,4+) = i \frac{\langle 12 \rangle^4}{\langle 12 \rangle \langle 23 \rangle \langle 34 \rangle \langle 41 \rangle}$$

• if gluon 3 soft $\rightarrow \langle 3j \rangle \approx \lambda$ with $\lambda \ll 1$

$$A(1-,2-,3+,4+) = \frac{\langle 24 \rangle}{\langle 23 \rangle \langle 34 \rangle} \cdot i \frac{\langle 12 \rangle^4}{\langle 12 \rangle \langle 24 \rangle \langle 41 \rangle}$$

• if gluon 2 soft $ightarrow \langle 2j
angle pprox \lambda$ with $\lambda \ll 1$

$$A(1-,2-,3+,4+) = rac{\langle 12
angle^4}{\langle 12
angle \langle 23
angle} \cdot i rac{1}{\langle 34
angle \langle 41
angle} pprox 0$$

Introduction	MHV amplitudes	One gluon emission in DY	Conclusions
0000	0 00000	0000	
Simplest results			

▶ 4-gluon scattering \rightarrow three independent amplitude

$$A(1\pm,2+,3+,4+) = 0$$
$$A(1-,2-,3+,4+) = i \frac{\langle 12 \rangle^4}{\langle 12 \rangle \langle 23 \rangle \langle 34 \rangle \langle 41 \rangle}$$

• if gluon 3 soft $ightarrow \langle 3j
angle pprox \lambda$ with $\lambda \ll 1$

$$A(1-,2-,3+,4+) = rac{\langle 24
angle}{\langle 23
angle \langle 34
angle} \cdot i rac{\langle 12
angle^4}{\langle 12
angle \langle 41
angle}$$

• if gluon 2 soft $ightarrow \langle 2j
angle pprox \lambda$ with $\lambda \ll 1$

$$A(1-,2-,3+,4+) = rac{\langle 12
angle^4}{\langle 12
angle \langle 23
angle} \cdot i rac{1}{\langle 34
angle \langle 41
angle} pprox 0$$

イロト 人間ト イヨト イヨト

Introduction	MHV amplitudes	One gluon emission in DY	Conclusions
0000	0 00000	0000	
Simplest results			

▶ 4-gluon scattering \rightarrow three independent amplitude

$$A(1\pm,2+,3+,4+) = 0$$
$$A(1-,2-,3+,4+) = i \frac{\langle 12 \rangle^4}{\langle 12 \rangle \langle 23 \rangle \langle 34 \rangle \langle 41 \rangle}$$

• if gluon 3 soft ightarrow $\langle 3j
angle pprox \lambda$ with $\lambda \ll 1$

$$A(1-,2-,3+,4+) = rac{\langle 24
angle}{\langle 23
angle \langle 34
angle} \cdot i rac{\langle 12
angle^4}{\langle 12
angle \langle 41
angle}$$

• if gluon 2 soft $ightarrow \langle 2j
angle pprox \lambda$ with $\lambda \ll 1$

$$egin{aligned} \mathcal{A}(1-,2-,3+,4+) &= rac{\langle 12
angle^4}{\langle 12
angle \langle 23
angle} \cdot i rac{1}{\langle 34
angle \langle 41
angle} pprox 0 \end{aligned}$$

イロト イポト イヨト イヨト

MHV amplitudes 0 00000 One gluon emission in DY

Conclusions

/□ ▶ < 글 ▶ < 글 ▶

One gluon emission in Drell-Yan $q + \overline{q} \rightarrow \gamma \rightarrow I + \overline{I}$

Introduction 0000	MHV amplitudes 0 00000	One gluon emission in DY •ooo •oo	Conclusions
Real gluon emission			

$$M(q_1^+q_2^-g^+p_1^+p_2^-) \propto rac{\langle q_1-|p_2+
angle^2}{\langle p_1-|p_2+
angle\langle g-|q_2+
angle\langle g-|q_1+
angle}$$

・ロト ・回ト ・ヨト ・ヨト

E

990

MHV amplitude

One gluon emission in DY ○●○○ ○○○

< 17 ▶

э

-≣ ▶

Conclusions

Real gluon emission

Correction to the truncated amplitude.

$$M_{E}^{\mu} = \left[g_{s}\sqrt{2}rac{C}{C'}rac{\langle q_{1} - |q_{2}+
angle}{\langle g - |q_{1}+
angle\langle g - |q_{2}+
angle}
ight]\left[eQC'\langle q_{2} + |\gamma^{\mu}|\,q_{1}+
angle
ight]$$

$$M^{E}(q_{1}^{+},q_{2}^{-},g^{+},p_{1}^{+},p_{2}^{-}) = M^{0}\left[g_{s}\sqrt{2}rac{C}{C'}rac{\langle q_{1}-|q_{2}+
angle}{\langle g-|q_{1}+
angle\langle g-|q_{2}+
angle}
ight]$$

MHV amplitudes

One gluon emission in DY 000 000

< 17 ▶

э

≣ ▶

DQ P

Conclusions

Real gluon emission

Correction to the truncated amplitude.

$$M_{E}^{\mu} = \left[g_{s}\sqrt{2}rac{C}{C'}rac{\langle q_{1}-|q_{2}+
angle}{\langle g-|q_{1}+
angle\langle g-|q_{2}+
angle}
ight]\left[eQC'\langle q_{2}+|\gamma^{\mu}|\,q_{1}+
angle
ight]$$

$$M^{E}(q_{1}^{+},q_{2}^{-},g^{+},p_{1}^{+},p_{2}^{-})=M^{0}\left[g_{s}\sqrt{2}rac{C}{C'}rac{\langle q_{1}-|q_{2}+
angle}{\langle g-|q_{2}+
angle}
ight]$$

MHV amplitude

One gluon emission in DY

< 17 ▶

э

-≣ ▶

Conclusions

5900

Real gluon emission

Correction to the truncated amplitude

$$\begin{split} M^{\mu}_{NE} &= S(g,q_1,q_2) e Q C' \langle q_2 + |\Gamma^{\mu}| q_1 + \rangle \\ \text{where} \qquad \Gamma^{\mu} &= \frac{\eta^{\mu\nu} (2q_1g) - 2q_1^{\mu}g^{\nu}}{2q_1q_2} \gamma_{\nu} \end{split}$$

$$M^{NE}(q_{1}^{+}q_{2}^{-}g^{+}p_{1}^{+}p_{2}^{-}) = M^{0}\left[g_{s}\sqrt{2}\frac{C}{C'}\frac{\langle g + |p_{1}-\rangle}{\langle g - |q_{2}+\rangle\langle q_{2}+|p_{1}-\rangle}\right]$$

MHV amplitude

One gluon emission in DY

< 17 ▶

-≣ ▶

Conclusions

Real gluon emission

Correction to the truncated amplitude

$$\begin{split} M^{\mu}_{NE} &= S(g,q_1,q_2) e Q C' \langle q_2 + |\Gamma^{\mu}| q_1 + \rangle \\ \text{where} \qquad \Gamma^{\mu} &= \frac{\eta^{\mu\nu} (2q_1g) - 2q_1^{\mu}g^{\nu}}{2q_1q_2} \gamma_{\nu} \end{split}$$

$$M^{NE}(q_1^+q_2^-g^+p_1^+p_2^-) = M^0 \left[g_s \sqrt{2} \frac{\zeta}{C'} \frac{\langle g + | p_1 - \rangle}{\langle g - | q_2 + \rangle \langle q_2 + | p_1 - \rangle} \right]$$

Introduction 0000	MHV amplitudes 0 00000	One gluon emission in DY	Conclusions
Real gluon emission			

Summing results:

$$M_{E+NE}(q_1^+q_2^-g^+p_1^+p_2^-) = M^0 \left[g_s \sqrt{2} \frac{C}{C'} \frac{\langle q_1 q_2 \rangle}{\langle gq_1 \rangle \langle gq_2 \rangle} \right] \left[1 - \frac{\langle q_1 g \rangle \left[gp_1 \right]}{\langle q_1 q_2 \rangle \left[q_2 p_1 \right]} \right]$$

K-factor
$$K(z) = \frac{1}{\sigma^0} \frac{d\sigma}{dz}$$

 $K_{E+NE}^{real}(z) = \frac{\alpha_s}{4\pi} C_f \left(\frac{2}{\epsilon^2} \delta(1-z) - \frac{4}{\epsilon} \left(\frac{1}{[1-z]_+} - 1\right) + \text{ finite terms}\right)$

< ロ > < 同 > < 臣 > < 臣 > -

Ð.

990

Introduction 0000	MHV amplitudes 0 00000	One gluon emission in DY ○○○● ○○○	Conclusions
Real gluon emission			

Summing results:

$$M_{E+NE}(q_1^+q_2^-g^+p_1^+p_2^-) = M^0 \left[g_s \sqrt{2} \frac{C}{C'} \frac{\langle q_1 q_2 \rangle}{\langle gq_1 \rangle \langle gq_2 \rangle} \right] \left[1 - \frac{\langle q_1 g \rangle \left[gp_1 \right]}{\langle q_1 q_2 \rangle \left[q_2 p_1 \right]} \right]$$

K-factor
$$K(z) = \frac{1}{\sigma^0} \frac{d\sigma}{dz}$$

 $K_{E+NE}^{real}(z) = \frac{\alpha_s}{4\pi} C_f \left(\frac{2}{\epsilon^2} \delta(1-z) - \frac{4}{\epsilon} \left(\frac{1}{[1-z]_+} - 1\right) + \text{ finite terms }\right)$

・ロト ・回ト ・ヨト ・ヨト

E

5900

Introduction 0000	MHV amplitudes 0 00000	One gluon emission in DY	Conclusions
Virtual gluon exchange in DY			

$$M(q_1^+q_2^-p_1^+p_2^-) = M^0(q_1^+, q_2^-, p_1^+, p_2^-) \cdot \cdot (i2g_s^2 C_f) \int \frac{d^n k}{(2\pi)^n} \frac{2q_1q_2}{k^2 k_1^2 k_2^2} \left[1 - \frac{k_1^2 - k^2}{2q_1q_2}\right] \left[1 - \frac{k_2^2 - k^2}{2q_1q_2}\right]$$

< □ > < □ > < □ > < □</p>

▶ < Ξ >

E

590

Introduction 0000	MHV amplitudes 0 00000	One gluon emission in DY ○○○○ ○●○	Conclusions
Virtual gluon exchange in DY			

Computation of the amplitude

- 4-dim helicity scheme instead of standard dimensional regularization
- E and NE contributions from numerator and denominator.
- E and NE approximation are done *before* integration
- Certain kind of integrals require "Glasgow" precription

K-factor:

$$\mathcal{K}_{E+NE}^{\textit{virtual}}(z) = \frac{\alpha_s}{4\pi} C_f \left[-\frac{2}{\epsilon^2} \delta(1-z) - \frac{4}{\epsilon} \delta(1-z) + \mathfrak{o}(\epsilon^0) \right]$$

医下颌 医下颌

Introduction 0000	MHV amplitudes 0 00000	One gluon emission in DY ○○○○ ○●○	Conclusions
Virtual gluon exchange in DY			

Computation of the amplitude

- 4-dim helicity scheme instead of standard dimensional regularization
- E and NE contributions from numerator and denominator.
- E and NE approximation are done *before* integration
- Certain kind of integrals require "Glasgow" precription

K-factor:

$$\mathcal{K}_{E+NE}^{\textit{virtual}}(z) = \frac{\alpha_s}{4\pi} C_f \left[-\frac{2}{\epsilon^2} \delta(1-z) - \frac{4}{\epsilon} \delta(1-z) + \mathfrak{o}(\epsilon^0) \right]$$

Introduction	MHV amplitudes	One gluon emission in DY	Conclusions
0000	0	0000	
	00000	000	
Virtual gluon exchange in DY			

Summing virtual and real contributions

$$\mathcal{K}_{E+NE}^{virtual+real}(z) = -\frac{\alpha_s C_f}{4\pi} \frac{4}{\epsilon} \left(\frac{1}{[1-z]_+} + \frac{\delta(1-z) - 1}{\epsilon} + \text{ finite terms} \right)$$

Expansion of Altarelli-Parisi splitting function:

$$P_{qq}(z) = \left[\frac{1+z^2}{1-z}\right]_+ \approx \frac{2}{[1-z]_+} + 2\delta(1-z) - 2 + \text{NNE terms}$$

∃ ► < ∃ ►</p>

MHV amplitudes 0 00000 One gluon emission in DY

Conclusions

▲ 伊 ▶ ▲ 三 ▶ ▲

Conclusions

Results:

- Found no NE corrections to MHV amplitudes
- ► Derived effective NE rules for gluon emission from quark-line
- ► Was able to reproduce DY logs that diverge at treshold
- extending NE effects and DY logs to all orders

MHV amplitudes 0 00000 One gluon emission in DY

Conclusions

▶ < ∃ >

< □ > <

Conclusions

Results:

- Found no NE corrections to MHV amplitudes
- ► Derived effective NE rules for gluon emission from quark-line
- ► Was able to reproduce DY logs that diverge at treshold Still to do:
 - extending NE effects and DY logs to all orders

MHV amplitudes 0 00000 One gluon emission in DY

- 4 同 ト 4 目 ト

Conclusions

DQ P

Thanks for your attention!

MHV amplitudes 0 00000 One gluon emission in DY

|| 日本 (日本) (日本)

Conclusions

"Glasgow" prescription

$$I_{Gl}(d,n) := \int_0^1 dx \ x^{-1-d+n} (1-x)^{-1+d-n}$$

Because of a UV/IR cancellation around $d \approx n$ this should be zero, but UV divergencies have counterterms that we have to include