

Search for displaced Lepton Jets in proton-proton collisions at $\sqrt{s} = -8$ TeV with the ATLAS Experiment...

28th IMPRS Workshop March 17th 2014 -Munich, GERMANY- *Salentina Caire* University of Calabria, INFN ←Cosenza, ITALY-

...and other (hardware) works!

Outline

Analysis: Introduction

- Standard Model and Beyond
- Beyond the Standard Model: Hidden Sectors
- Higgs Boson Decays in the Hidden Sector
- ATLAS Experiment at the Large Hadron Collider

Analysis: Search for Displaced Lepton Jets

- Definitions and types
- Triggers
- Lepton Jet Gun Monte Carlo
- Cuts

Analysis: Background Events

- Cosmics
- QCD

Analysis: Hidden Valley Models

Analysis: Systematics

Hardware: Micro-Pattern Gas Detectors

Standard Model and Beyond

Beyond the Standard Model: Hidden Sector

Higgs Boson Decays in the Hidden Sector July 4th2012 : ATLAS and CMS discover an STANDARD MODEL HiggsBoson-like particle **BEYOND the STANDARD MODEL** Higgs Boson rare decays in the Hidden Sector. portal to hidden sector: ex. higgs h ϕ, χ hidden SM sector $SU(3) \times SU(2) \times U(1)$ G_d $\mathcal{L} \supset rac{\epsilon}{2} \, F^{\mu u} b_{\mu u} + m_{\gamma_d}^2 \, b^2$ q, lhidden particles decay back to dark-photons to SM: ex. collimated pair of leptons (Lepton Jets) γ_d Branching Ratio 1.00 0.70 0.50 $H(SM) \rightarrow instable \ particles \ (hs)$ $e^+e^$ u† uī **24** 0.30 Hadrons В instable part (hs) \rightarrow long lived light particles (γ_d) 0.20 0.15 0.10 γ_d (hs) $\rightarrow e, \mu, \pi$ pairs – Lepton Jet – (SM) 0.50 0.70 1.00 1.50 2.00 0.10 0.15 0.20 0.30

Valentina Cairo

3.00

 γ_d Mass [GeV]

ATLAS Experiment at the Large Hadron Collider

Search for Lepton Jets: Definitions and Types

- Model Indipendent Search
- "Displaced" (o "non-prompt") = collimated jet of light particles originated further the last Pixel plane in the Inner Detector (>15cm)

A Lepton Jet is defined starting from two different objects:

- tracks inside the muon spectrometer;
- jets into the calorimeter.

Type 0: ≥2 MS tracks clustered in ΔR and no jets in the cone

Only MUONS

March 17th 2014

$\Delta R = \sqrt{\Delta \phi^2 + \Delta \eta^2}$

Type 1: ≥2 MS tracks and one jet clustered in ΔR

MUONS e PIONS/ELECTRONS

Valentina Cairo

Type 2:

Only one jet with low em fraction and narrow width

PIONS/ELECTRONS in hadr cal

8

Triggers

Triggers for non-prompt Lepton Jets:

Muonic Trigger (EF_3mu6_MSonly)

requires \geq 3 muons with pT > 6 GeV only in Muon Spectrometer (MS)

This trigger selects displaced Lepton Jets with high muonic content

Calorimetric Trigger (EF_j35_a4tcem_L1TAU_LOF_HV)
 requires log(h/e) > 1.2 for the jet

This trigger selects displaced Lepton Jets with high electronic/pionic content in the HCAL

Lepton Jet Gun Monte Carlo

Lepton Jet Gun Monte Carlo to study cuts and detector acceptance

Dark photon parameters:

 γ_{d}

- m = 50, 150, 400, 900, 1500 MeV;
- p_T uniform in the range [5, 100] GeV;
- η uniform in the range [-2.5, 2.5];
- ϕ uniform in the range [-3.14, 3.14] rad;
- Transverse and longitudinal polarization;
- BR in e, μ, π related to the dark photon mass.

100 k events for each sample.

Scalar parameters :

- m = 1, 2, 5, 10 GeV;
- p_T uniform in [5, 100], [10, 100], [15, 100] GeV;
- η uniform in the range [-2.5, 2.5];
- ϕ uniform in the range [-3.14, 3.14] rad.

Dark photon parameters:

- m = 50, 150, 400, 900, 1500 MeV;
- No polarization;
- BR in e, μ, π related to the dark photon mass.

100 k events for each sample.

March 17th 2014

Valentina Cairo

NO difference in the two polarization states

NO difference in the two polarization states

Valentina Cairo

Valentina Cairo

Isolation $\sum p_T$

• Isolation variable $\sum p_T$ = scalar sum of the all tracks transverse momentum inside the Inner Detector in a cone of angular aperture equal to 0.5 around the Lepton Jet direction.

Jet Timing

Timing t = time difference between the bunch crossing time and that relative to the energy deposition in the calorimetric cells

> Remove jets with t < -1 ns ot > 5 ns

Valentina Cairo

Lepton Jet Parameters

4 Angular Aperture $\Delta R < 0.5$ \blacksquare EM fraction < 0.1 \downarrow WIDTH < 0.1 + Isolation $\sum p_T < 3 \text{ GeV}$ ↓ Jet Timing $t \in [-1,5]$ ns

Additional cut at Event Level: Angulare Aperture between the two LJ in the event $-\Delta\phi$ -

- Falkowsky-Ruderman-Volansky-Zupan Models (next slides) with two or four dark photons
- Background events $t \bar{t}$
- $|\Delta \phi| > 2$ (Lepton Jets back-to-back production) to reduce the background

Lepton Jets Events Selection (cut flow)

cut	cut name	cut description			
1	LJ minimal	select events with at least			
	request	2 reconstructed LJ			
2	η cut for	remove jets with $ \eta > 2.2$			
	LJ TYPE2	and $1.0 < \eta < 1.4$ (LJ TYPE2)			
3	EM fraction cut	require EM fraction of the jet			
	for LJ TYPE2	< 0.1 (LJ TYPE2)			
4	WIDTH cut for	require WIDTH of the jet < 0.1 (LJ TYPE2)			
	LJ TYPE2	< 0.1 (LJ TYPE2)			
5	jet timing cut	require jets with timing			
		-1ns < t < 5ns (LJ TYPE1 and TYPE2)			
Select the leading p_T LJ in the event and					
	find the f	farthest LJ in $ \Delta \phi $ wrt the leading LJ			
6	no combined	require no combined muons			
	muons	(LJ TYPE0 and TYPE1)			
		require			
7	ID isolation	$max(\sum p_T^{\Delta R < 0.5} LJ1, \sum p_T^{\Delta R < 0.5} LJ2) < 3000 MeV$			
		$(p_T \text{ tracks} > 500 MeV)$			
8	$\Delta \phi \operatorname{cut}$	require $\Delta \phi > 2 \ rad$ between the two LJ's			
		in the event (back-to-back production)			

Background Events

Background Events:

- W/Z+jet and W/Z+jet+gamma
- Di-photons and Di-bosons
- Single top
- $t \overline{t}$
- Cosmics
- QCD di-jet

- All already negligible at trigger level, except for:
 - $t \overline{t}$
 - Cosmics
 - QCD di-jet: too low MC statistics \rightarrow ABCD method

Cut flow on $t - \overline{t}$ and cosmics

cut	Number of events MCNLO $t\bar{t}$	
trigger selection	103880.0	
good primary vertex	103840.0	
LJ minimal request	11456.2	
η cut for LJ TYPE2	580	
EM fraction cut for LJ TYPE2		
WIDTH cut for LJ TYPE2	0	$$ No $t = \overline{t}$ events ofter the sut flow
jet timing cut	0	$\iota = \iota$ events after the cut now
no combined muons	0	
ID isolation	0	
$\Delta \phi { m cut}$		

cut	cosmic background (events from triggers on empty bunches)
trigger selection	161951
good primary vertex	-
LJ minimal request	11432
η cut for LJ TYPE2	7257
EM fraction cut for LJ TYPE2	7000
WIDTH cut for LJ TYPE2	4341
jet timing cut	80
no combined muons	80
ID isolation	80
$\Delta \phi { m cut}$	10

10 cosmics events after the cut flow

 $SF = \frac{Number \ of \ Filled \ Bunch \ Crossings}{Number \ of \ Empty \ Bunch \ Crossings}$

Re-weighted cosmics = 23 ± 8

QCD background evaluation: ABCD method

- QCD di-jet: MC statistics too low \rightarrow data driven technique \rightarrow ABCD method
- Two variables ABCD method: background evaluation in the signal region (A) starting from the three control regions (BCD)
- Uncorrelated variables in this analysis: $\max \sum p_T \in |\Delta \phi|$

Hidden Valley Models (1)

Falkowsky-Ruderman-Volansky-Zupan Models

The Higgs boson is generated by gluon-gluon fusion.

In the proton-proton collision at $\sqrt{s} = 8$ TeV, the cross section for this process is $\sigma_{SM} = 19.3$ pb for $m_H = 125$ GeV.

$m_{f_{d2}}$	$m_{f_{d1}/LSP}$	$m_{s_{d1}}$	m_{γ_d}	$c au_{\gamma_d}$	BR	BR	BR
[GeV]	[GeV]	[GeV]	[GeV]	[mm]	$\gamma_d \rightarrow ee$	$\gamma_d \rightarrow \mu \mu$	$\gamma_d o \pi\pi$
5.0	2.0	-	0.4	47	0.45	0.45	0.10
5.0	2.0	2.0	0.4	47	0.45	0.45	0.10

March 17th 2014

Valentina Cairo

Hidden Valley Models (2)

Higgs BR into the hidden sector = 10%, total luminosity = 20.34 fb^{-1}

cut		4 γ_d MC signal	$2 \gamma_d$ MC signal				
trigger selec	etion	2518.1	1330.0				
good primary	vertex	2516.7	1329.8				
η cut for LJ 7	TYPE2	350.3	165.3				
EM fraction cut for	LJ TYPE2	240.1	111.0				
WIDTH cut for I	LJ TYPE2	240.1	110.8				
jet timing	cut	226.1	105.3				
no combined	muons	123.5	67.6				
ID isolati	on	84.6	52.7				
$\Delta \phi \mathrm{cut}$		72.0	42.6				
LJ pair type	$4 \gamma_d MC$ signa	l 2 γ_d MC signal	cosmic bkg				
0 - 0	27.0	16.1	12.6				
0 - 1	28.4	7.0	0.0				
0 - 2	2.2	8.4	10.7				
1 - 1	11.7	1.0	0.0				
1 - 2	2.7	1.1	0.0				
2 - 2	0.0	9.0	2.9				

March 17th 2014

Valentina Cairo

Systematics

- ↓ Efficiency reconstruction systematics using $J/\Psi \rightarrow \mu^+\mu^-$ data \rightarrow 5.4 %
- ↓ Muonic trigger efficiency systematics using $J/\Psi \rightarrow \mu^+\mu^-$ data \rightarrow 6 %
- ↓ Calorimetric trigger efficiency systematics using 2012 data \rightarrow 11%
- **4** Luminosity systematics: official value \rightarrow **2.8** %
- ↓ Higgs production cross section systematics → 15%
- Effect of the pile-up on the isolation in ID \rightarrow 2.5%
- **4** ABCD method systematics \rightarrow **15** %

ANALYSIS NON YET UNBLINDED

Micro-Pattern Gas Detectors: Spiral Detector

- Three months in the Rui De Oliveira workshop as CERN Summer Student
- Hardware R&D project: simulate, optimize and produce Micro-Pattern Gas Detectors
- Two main important items: Spiral Detector and Conic ThGEM (see report at https://cds.cern.ch/record/1603668)

WHAT ABOUT SPIRAL DETECTOR?

After this first version, other two improvements of the spiral detector were produced (see extra slides for detail)

March 17th 2014

Micro-Pattern Gas Detectors: Spiral Detector

- Three months in the Rui De Oliveira workshop as CERN Summer Student
- Hardware R&D project: simulate, optimize and produce Micro-Pattern Gas Detectors
- Two main important items: Spiral Detector and Conic ThGEM (see report at https://cds.cern.ch/record/1603668)

WHAT ABOUT SPIRAL DETECTOR?

After this first version, other two improvements of the spiral detector were produced (see extra slides for detail)

Results & Conclusions

ANALYSIS

Lepton Jets production can occur through a rare Higgs decay in hidden particles. Some of these particles (dark photons) can be long lived particles and decay into collimated pairs of light visible particles.

State of the Art when I defended my thesis:

- Lepton Jet Gun Monte Carlo to define cut flow
- Cut flow on background events: 11 QCD di-jets and 23 cosmics
- Cut flow on FRVZ Models: 72 events in the 4gds model and 43 events in the 2gds model
- Systematics evaluated
- Ready for the first meeting with the Editorial Board

State of the Art now:

After a long discussion with the Editorial Board $\rightarrow |\Delta \phi| > 1$ instead of $|\Delta \phi| > 2$ (more model independent)

Ready for the approval and the unblinding (ATL-COM-PHYS-2014-028 at https://cds.cern.ch/record/1643479)

HARDWARE

The first version of the Spiral Detector was presented at the 12th RD51 Collaboration Meeting (<u>https://indico.cern.ch/conferenceTimeTable.py?confId=267513#20131016</u>) in October 2013 at CERN, and at the XII workshop on Resistive Plate Chambers and Related Detectors (<u>http://166.111.32.59/indico/contributionDisplay.py?contribId=62&sessionId=30&confId=1</u>) in February 2014 in Beijing.

The last improvement of the spiral detector is under test.

March 17th 2014

Useful references

kinetic mixing:

•B. Holdom, Phys.Lett. B166 (1986) 196

lepton jet idea:

N.Arkani-Hamed and N.Weiner, 0810.0714

lepton jet pheno:

•	M. Baumgart C. Cheung, J.T. Ruderman, LT. Wang, I. Yavin,	0901.0283
•	Y. Bai, Z. Han, <u>0902.0006</u>	

- C. Cheung, J.T. Ruderman, L.-T. Wang, I. Yavin, 0909.0290
- A. Falkowski, J.T. Ruderman, T. Volansky, J. Zupan, 1002.2952
- A. Falkowski, J.T. Ruderman, T. Volansky, J. Zupan, 1007.3496
 - L. Carloni, J. Rathsman, T. Sjostrand, 1102.3795
- Y. F. Chan, M. Low, D. E. Morrissey, A. P. Spray, 1112.2705

Thanks for

attention!

Pensare per il piacere di pensare, come per la musica... Albert Einstein

EXTRA SLIDES

Standard Model and Supersymmetry

Not yet supersymmetric particles observed

Valentina Cairo

Composition and lifetime

composition depend on dark photon mass:

 $m_{\gamma}{<}2m_{e}\rightarrow$ dark photon stable \rightarrow invisible higgs signature

 $2m_e{<}m_{\gamma}{<}2m_{\mu} \rightarrow electron{-jets}$

 $2m_\mu {<} m_\gamma {<} 2m_\pi \rightarrow electron\&muon-jets$

 m_{γ} >2 $m_{\mu} \rightarrow$ pion-jets (BR depends on R)

 $R = rac{\sigma(e^+e^-
ightarrow {
m hadrons})}{\sigma(e^+e^-
ightarrow \mu^+\mu^-)}$

lifetime depends on the size of kinetic mixing:

$$\Gamma = rac{1}{3}lpha\,\epsilon^2\,m_{\gamma_d}\,\sqrt{1-rac{4m_l^2}{m_{\gamma_d}^2}}\left(1+rac{2m_l^2}{m_{\gamma_d}}
ight)$$

NOTE: due to the low γ_d mass, boost also important

from prompt decays to decays into any part of the ATLAS detector

Valentina Cairo

Dark Matter Experimental Evidences

Fritz Zwickly, 1933: Coma Cluster galaxies were moving too quickly with respect their visible mass.

NGC 4911 spiral galaxy into the Coma Cluster.

Telescopio Canada-Francia-Hawaii, 2008: The light has a deviation during its cosmic journey also where there is no visible mass.

PAMELA (a Payload for Antimatter Matter Exploration and Light Nuclei Astrophysics), sent into the space on the Resurs-DK1 satellite.

Canada–France–Hawaii telescope situated on the Mauna Kea mountain at 4.204 m.

PAMELA, in orbit around the Earth from 2006:

It measured an increase of the ratio $e^+/(e^+ + e^-)$ into the range 10 – 50 GeV.

A possible explaination is the annihilation of Dark Matter:

WIMPs can collide with annihilation into a photon that materialize into a electron-positron pair.

Quality Criteria for MS and ID tracks

MS tracks

- p < 1TeV; $|\phi| < 5$ rad; $|z_0| < 270$ mm; $|d_0| < 200$ mm;
- $nMDThits > 9 \cap (nRPCPhiHits+nRPCEtaHits) > 2$ per il barrel;
- nMDThits > 9 ∪ (nCSCPhiHits + nCSCEtaHits > 2) ∩ (nTGCPhiHits + nTGCEtaHits) > 2 per gli endcap.

ID tracks

- $|z_0| < 10 \text{mm} \cap p_T > 500 \text{MeV} \cap |\eta| < 2.4;$
- $nBLhits > 0 \cap nPixHits > 1 \cap nSCThits > 5 \cap nTRThits > 5$.

Available MC generators in ATLAS

- Displaced-LJ generator based on MG5 (FVRZ)
 - 2 and 4 dark photons (can be generalized to more γ_d)
 - interfaced with ATLAS via lha input files
 - parameters: h, N, n, LVSP, γ_d masses, γ_d lifetime
- LJ Gun generator: very useful to build up acceptance/efficiency maps as a function of the above parameters
 - reduce model dependence in optimizing the analysis selection
 - facilitate interpretation in the context of different models

Non-prompt LJs

TYPE 0: ≥ 2 MUIDSA clustered in a $\Delta R=0.5$ cone and NO jets in the cone

TYPE I: ≥ 2 MUIDSA + one "good" jet clustered in a $\Delta R=0.5$ cone

TYPE 2: a jet with EM fraction < 0.4 and width < 0.2

Lepton Jet Gun Monte Carlo (2)

MC12	m_{γ_d}	γ_d	BR	BR	BR
dataset ID	[MeV]	polarization	$\gamma_d \to e^+ e^-$	$\gamma_d \to \mu^+ \mu^-$	$\gamma_d \to \pi^+ \pi^-$
182483	50	TP	1	0	0
182483	50	LP	1	0	0
182487	150	TP	1	0	0
182488	150	LP	1	0	0
182491	400	TP	0.45	0.45	0.10
182492	400	LP	0.45	0.45	0.10
182495	900	TP	0.30	0.30	0.40
182496	900	LP	0.30	0.30	0.40
182499	1500	TP	0.30	0.30	0.40
182500	1500	LP	0.30	0.30	0.40

Lepton Jet Gun Monte Carlo (3)

MC12	$m_{s_{d1}}$	$pT^{s_{d1}}$	m_{γ_d}	BR	BR	BR
dataset ID	[GeV]	[GeV]	[MeV]	$\gamma_d \to e^+ e^-$	$\gamma_d \to \mu^+ \mu^-$	$\gamma_d \to \pi^+ \pi^-$
182502	1	$5 \div 100$	50	1	0	0
182504	1	$5{\div}100$	150	1	0	0
182506	1	$5{\div}100$	400	0.45	0.45	0.10
182508	2	$5{\div}100$	50	1	0	0
182510	2	$5 \div 100$	150	1	0	0
182512	2	$5{\div}100$	400	0.45	0.45	0.10
182514	2	$5{\div}100$	900	0.30	0.30	0.40
182516	5	$10 \div 100$	50	1	0	0
182518	5	$10 \div 100$	150	1	0	0
182520	5	$10 \div 100$	400	0.45	0.45	0.10
182522	5	$10 \div 100$	900	0.30	0.30	0.40
182524	5	$10 \div 100$	1500	0.30	0.30	0.40
182526	10	$15 \div 100$	50	1	0	0
182528	10	$15 \div 100$	150	1	0	0
182530	10	$15 \div 100$	400	0.45	0.45	0.10
182532	10	$15 \div 100$	900	0.30	0.30	0.40
182534	10	$15 \div 100$	1500	0.30	0.30	0.40

Lepton Jet Gun $\Delta R_{80\%} \gamma_d \rightarrow e^+ e^-$

Lepton Jet Gun $\Delta R_{80\%} \gamma_d \rightarrow \mu^+ \mu^-$

Lepton Jet Gun $\Delta R_{80\%}$ $\gamma_d \rightarrow \pi^+\pi^-$

Lepton Jet Gun $\Delta R_{80\%}$ $s_d \rightarrow \gamma_d \gamma_d$

March 17th 2014

Valentina Cairo

Lepton Jet Gun: Reconstruction Efficiency

• Lepton Jet Gun Monte Carlo to evaluate the Lepton Jets reconstruction efficiency

The reconstruction efficiency is defined as:

$$\epsilon_{rec} = \frac{\# LJ_{rec}}{\#_{tot} LJ_{GunMC}}$$

Reconstruction Efficiency for muons and jets VS p_T

Reconstruction Efficiency for LJ VS p_T

March 17th 2014

 $2 \times \Delta R$

Reconstruction Efficiency

Figure 25: Reconstruction efficiency of LJ TYPE0 as a function of the γ_d decay point and of the p_T for single γ_d samples ($\gamma_d \rightarrow \mu\mu$) (barrel only).

Additional cut at Event Level: Angulare Aperture between the two LJ in the event $-\Delta\phi$ -

$\Delta \phi$ between the farthest LJ with respect to the leading p_T LJ in the event

•Use dark photons from full simulation of Falkowsky-Ruderman-Volansky-Zumpan (FRVZ) model (see also later for details on such model) and SUSY LJ production

Valentina Cairo

SIGNIFICANCE

4.1 Selection criteria for LJ

In this section we describe the analysis cuts used for selecting LJs produced in the 2012 data collected by ATLAS. The main aim of the cuts is to extract the LJ signal from the overwhelming background of the standard p-p interactions. The main background source to the LJ signal is expected from QCD multi-jets production and from cosmic-ray muons crossing the detector in time coincidence with a bunch crossing interaction. Due to the lack of statistics available for the multi-jet low E_T Monte Carlo samples, events selected by single jet trigger (lowest available 15 and 35 GeV thresholds) in the first 2 fb⁻¹ 2012 data have been used in order to study the discriminating variables that can be used to separate the signal from the QCD multi-jets background, reducing as much as possible the signal loss. Cuts for LJ selection have been optimized in order to maximize the signal significance defined as [27]

$$\sqrt{2((s+b)ln(1+s/b)-s)}$$
 (1)

where s is the signal and b the background. For the LJ signal we have used the most unfavorable case, i.e. a LJ from an s_{d_1} of 10 GeV and a γ_d of 1500 MeV).

For the cosmic-ray background we have used a sample of events collected in the empty bunch crossings with the same triggers used to select our data sample (see Section 6).

Cut flow on Cosmics

cut	cosmic-ray background			
	(number of events from triggers on empty bunches)			
trigger selection	161951			
good primary vertex	161951			
LJ minimal request	11432			
η cut for LJ TYPE2	7257			
EM fraction cut for LJ TYPE2	7000			
WIDTH cut for LJ TYPE2	4341			
jet timing cut	80			
no combined muons	80			
ID isolation	80			
$\Delta \phi$ cut	13			

LJ pair type	Estimated cosmic-ray background $\Delta \phi \ge 1$
TYPE0 - TYPE0	$15 \pm 6 (stat)$
TYPE0 - TYPE1	$0^{+2.3}_{-0}$ (stat)
TYPE0 - TYPE2	$16 \pm 7 (stat)$
TYPE1 - TYPE1	$0^{+2.3}_{-0}$ (stat)
TYPE1 - TYPE2	$0^{+2.3}_{-0}$ (stat)
TYPE2 - TYPE2	2.9 ± 2.9 (stat)

Hidden Valley Models

Higgs BR into the hidden sector = 10%, total luminosity = 20.34 fb^{-1}

cut		$4 \gamma_d$ FRVZ model			$2 \gamma_d$ FRVZ model	
	(nu	(number of events in 20.34 fb^{-1})			(number of events in 20.34 fb^{-1})	
trigger selection		2518			1330	
good primary vertex			2516		1330	
LJ minimal request			793			354
η cut for LJ TYPE2			350			165
EM fraction cut for LJ TY	PE2		240			111
WIDTH cut for LJ TYPE	32		240			111
jet timing cut			226			105
no combined muons			123		68	
ID isolation		85		53		
$\Delta \phi$ cut		84			50	
	·					
LJ pair type	$4 \gamma_d$	FRVZ m	odel		$2 \gamma_d$ FRVZ n	nodel
(n	umber of	events in	20.34 fb^{-1})	(numl	per of events in	(20.34 fb^{-1})
TYPE0 - TYPE0		31			20	
TYPE0 - TYPE1		33			9	
TYPE0 - TYPE2		3			10	
TYPE1 - TYPE1		13			1	
TYPE1 - TYPE2		4			2	
TYPE2 - TYPE2		0			8	

March 17th 2014

Jets in the transition regions and at high pseudorapidity

•Many jets mimic jets with low em fraction in the barrel-endcap transition regions and at high pseudorapidity

•remove jets with $1.0 < |\eta| < 1.5$ and with em fraction > 0.1 from LJ TYPE 2 (as suggested from the egamma performance group)

QCD background evaluation: ABCD method

- QCD di-jet: MC statistics too low → ABCD method
- Two variable ABCD method: background evaluation in the signal region (A) starting from the three control regions (BCD)
- Uncorrelated variables in this analysis: $\max \sum p_T \in |\Delta \phi|$

ABCD method

• ABCD method background evaluation

The systematic uncertainties that can affect the background multi-jet estimation are related to the data-driven method used. The cuts used to define the various regions have been changes by 20% and the background values have been recomputed. This systematic uncertainty amounts to 15%.

The effect of signal leakage will be taken into account using the latest simultaneous ABCD version suggest by the statistic forum (simultaneous fit of signal and background in the four regions), once the analysis will be unblinded.

All LJ pair TYPES

Data Type	Events in B	Events in C	Events in D	Expected Events in A
2012 COSMIC-RAY DATA	0	0	180 ± 23	34 ± 9
2012 DATA (cosmic rays subtracted)	696 ± 26	484 ± 22	59 ±27	85± 30

 Removing TYPE2-TYPE2 pairs: QCD background is expected to give the maximum contribution; depending on the type of model, TYPE2 - TYPE2 events can be removed or not, depending on the ratio expected-signal to background

Data Type	Events in B	Events in C	Events in D	Expected Events in A
2012 COSMIC-RAY DATA	0	0	2.9±2.9	32 ± 9
2012 DATA (cosmic rays subtracted)	78 ±9	22 ±5	16 ± 4	57 ±22

Valentina Cairo

Effect of the pile-up on the isolation in ID

Trigger Efficiency

A large fraction of the standard ATLAS triggers are strictly linked to the primary vertex and therefore are very inefficient in selecting displaced decay vertices. Therefore we have used dedicated triggers like the Hidden Valley (HV) triggers [28, 29] and triggers that are not linked to the primary vertex position. In order to search for LJs TYPE0 and TYPE1 we need a multi-muon trigger that does not require combined MS-ID muon tracks, that has a relatively low p_T threshold and is unprescaled over the full 2012 data taking period.

Available single muon triggers and di-muon triggers with displaced vertex cannot be used because they are prescaled or with too high p_T threshold. The only available HLT triggers satisfying our requirements is the *EF_3mu6_MS only* that starts from a three L1 muons with a $p_T \ge 6$ GeV, reconstructed only in the MS. A single jet trigger could be used to select LJs TYPE1, but the available low threshold jet triggers (e.g. 15, 35 or 80 GeV) were strongly prescaled in 2012 data taking. The higher threshold jet trigger are useless, as ther LJ signal can very well be below the 80 GeV. For LJs TYPE2 the only unprescaled available trigger is one of the HV triggers, the *EF_j35_a4tcem_L1TAU_LOF_HV* that is seeded by a tau40 L1 and requires a very low em fraction for the jet [29].

Gas Electron Multiplier

Initially developed as a preamplifier stage for an MSGC, the Gas Electron Multiplier (GEM) became soon a detector on its own.

March 17th 2014

Valentina Cairo

March 17th 2014

Valentina Cairo

Spiral Detector

Surface: Electric field norm (V/m) Streamline: Electric field

Spiral Detector

Line Graph: Electric field norm (V/m) Line Graph: Electric field norm (V/m)

March 17th 2014

Spiral Detector – First Improvement-

Spiral Detector – First Improvement-

Spiral Detector – First Improvement-

March 17th 2014

Valentina Cairo

Spiral Detector –Second Improvement-

Spiral Detector -Second Improvement-

Spiral Detector –Second Improvement-

