

SC Progress Update

Michael Ritzert michael.ritzert@ziti.uni-heidelberg.de 16th International Workshop on DEPFET Detectors and Applications 28.05.2014

Contents

- Hardware interfaces
 - DHH(C, +JTAG): see talk by Igor
 - ONSEN
 - IBBelle
 - Environmental Sensors
- Interface to Belle II
 - New global RC/PSC scheme
- Alarms, Interlocks

EPICS on ONSEN

(Report from Bjoern Spruck)

- Reminder: The IOC for ONSEN runs directly on the PowerPC in the FPGA.
- Cross compiling EPICS for the PowerPC was much harder than expected.
 - Now it is working reliably (Klemens Lautenbach).
 - Before we were using a version which was compiled on a NFS mounted development system, which tends to be time consuming, and had problem with the library compatibility to our Linux system.
 ⇒ static linking, or additional copies of libs.
- Until now: Monitoring of few hardware registers (link up, IP/MAC address, free memory buffers...).
- Now we can start to move the complicated things to EPICS:
 - Initialization code/run start/stop
 - Access to monitor device (interrupts) etc.

- Meeting at CERN to test EPICS with the actual PLC hardware. No problems on first try.
 ⇒ Working proof-of-concept implementation available for a subset of the UNICOS objects¹.
- For other objects: 50% copy-and-paste, 50% new work.
- Adding EPICS support to UNICOS is easy. We need to modify ~20 python scripts. 3 already done. 1 day of work left.
- On EPICS/CSS side:
 - Implement new CSS widgets following UNICOS conventions.
 - Implement OPI screens for device control.
- Work to be distributed between DESY, MPI, UH.
- First goal: All of IBBelle under EPICS control in time for commissioning of IBBelle.
- Second goal: Integration with the EPICS alarm system. (Development of suitable widgets by CSS core developers ongoing.)

¹ Object types: 4 Main categories, 20 types: Field (e.g. valve), Interface (e.g. config data),

- Discussion with the Triest group about env. sensors started.
- Radiation: Diamond sensors with readout by AH501B (BEAST1) or successor (BEAST2).
 - Communication via TCP/IP.
 - Integration into EPICS for monitoring (should be) easy.
- Temperature (SVD): NTC thermistors read out by ELMB (from Atlas).
 - Communication via CAN bus.
 - Usual software Windows-only.
 - To be evaluated in detail (CANbus driver for EPICS is available).
- Temperature / Humidity: FOS.
 - As in the DESY testbeam.
 - But with an optical multiplexer to read more fibers.
 ⇒ Some programming still to be done.

Master RC / PSC Interface

- New interface to Belle II: Power-supply Control.
- In the PXD case:
 - Controls all voltages that reach the DEPFET matrix.
 - Strong dependence on the RC.
- Definition not final, yet(?).

- Master state transitions shown on the left (from M. Nakao): RC-State / PSC-State
- Mapping to PXD straightforward:
 - RC READY: All device SC connections established, no interlock triggered.
 - RC RUNNING: All systems configured, ready to take data. Implies LV fully on.
 - PSC PEAK: All voltages on.
 - ⇒ same sequence as before, just new grouping into steps

Alarms, (Software) Interlocks

- We need to collect information from our devices about
 - − Abnormal conditions \Rightarrow alarms
 - − Dangerous conditions \Rightarrow interlocks
- The required data is roughly the same:
 - Description of the condition
 - How it can be detected in the SC system
 - What data needs to be available in EPICS for monitoring?
 - How does it have to be processed?
 - What has to be done
 - Automatic shutdown (interlock)
 - Guidance for the operator to recover the situation (later automatic recovery)
- I'm looking for a good platform to manage the data.
 - Collect in the wiki?
 - Simple PHP interface to a database?

Example Alarm Condition

- Description: ONSEN stops delivering data
- How detected:
 - throughput on network interface < threshold.
 PV Oxx:eth0:RATE < threshold
 - or reported data rate (hits per second) < threshold.
 PV Oxx:hitrate:RATE < threshold
- Can be ignored:
 - If not in physics run
- Type: major alarm (justification: data quality compromised)
- Recovery: send IPMI reset to crate on PV Ixx:Oxx:reset:S
- Tree structure of errors:
 - Data flow broken
 - DHH stops delivering data
 - ONSEN stops delivering data
 - backpressure from B2 DAQ

Thank you!