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Misalignment - LER

The displacement of the beam pipe on -0.5mm along X axis is considered as misalignment.
The data sample contains ~3.5e+10 initial positrons generated that makes ~39% of LER bunch charge,
cut on SR photon energy E > 5KeV. Lattice version — sler_1682. Latest IR geometry version.
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Extrapolating hit rates in Be part yields in occupancy
for PXD1 from LER in case of misalignment : ~2e-3% ,
occupancy for ideal alignment is ~1e-4%.




Misalignment - HER

The displacement of the beam pipe on -0.5mm along X axis is considered as misalignment.

The data sample contains ~3.11e+10 initial positrons generated that makes ~48% of HER bunch charge,

cut on SR photon energy E > 5KeV. Lattice version — sher 5753. Latest IR geometry version.
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Number of hits per bunch crossing: Extrapolating hit rates in Be part yields in occupancy
Misalignment |deal alignment for PXD1 from HER in case of misalignment : .
Be part 7.2e+3 £+ 200 1.4e+3 £ 100 (0.15*0.07%

Tipart 1.2e+6 x 1.6e+3 1.3e+5 = 600
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Misalignment - HER

Occupancy estimation with stopping power method:
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Occupancy Versus Z with misalignment +0.5mm
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Most of the hits assumes to be in sensors 1.1.1 and 1.1.2 (¢ and z — distributions).
The result is compatible with estimation using hit rates — (0.15 £ 0.07)%
Occupancy for ideal alignment (0.06 * 0.04)%.



Beam halo - LER (gaussian halo)

The data sample contains ~5.68e+6 initial electrons generated that corresponds to ~2*LER bunch charge,
assuming that fraction of the tails outside 100x of the core is equal 1e-5 of the core,cut on SR photon
energy E > 5KeV. Lattice version — sler_1682. Gaussian shape of the halo with o = 100 of the core.
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Extrapolating hit rates in Be part yields in the occupancy for PXD1 from beam halo in LER ~ 1e-4% .
Normalization is done assuming that fraction of tails beyond 100x = 1e-5 of the core (KEKB TDR)



Beam halo - HER (gaussian and uniform)
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Uniform halo — 2D circular flat distribution of (X,X")/(Y,Y') in normalized coordinates with radius 20*Vex/ey
(half width = 200 of the core) instead of gaussian with o = 100 of the core.

Number of hits per bunch crossing:
GausHalo UnifHalo Core GausHalo UnHalo Core
Bepart 1.8e+3+20 26e+3+£20 1.4e+3 £100 Tipart 3.7e+4 £ 100 4.7e+4 £+ 100 1.3e+5 £ 600
Gaussian halo - 349 SR photons penetrated beam pipe and 29 of them hit the PXD1.
Uniform halo - 393 SR photons penetrated beam pipe and 41 of them hit the PXD1.

Occupancy estimation under assumption that fraction of tails beyond 100x = 1e-5 of the core



Beam halo HER
Occupancy in PXD1

Occupancy calculated assuming uniform phi distribution and that hits are only in the forward sensors.
Total occupancy — ~0.001% (for both type of halo) - negligible.
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Beam halo HER

Energy spectrum

Energy of photons in the central beampipe
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Beam halo HER
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All distributions are normalized to HER bunch charge

Most of SR photons of beam halo that hit the Be part of beam pipe are produced by the tails far from
the central beam orbit (beyond 100 of the core) inwards HER.
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Halo shape from beam-beam simulation

Beam beam HER X
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No entries beyond 100(X/Px) and beyond 300(Y/Py). — The fraction of tails < 5e-07.
Negligible contribution to PXD occupancy for beam halo for both HER and LER.



Atomic Deexcitation processes.

Fluorescence and Particle Induced X-ray Emission (PIXE).

Test run (1.1e+10, ~ 17% of bunch charge) with FLUO and PIXE for HER.
The hit rates withing statistical uncertainties are the same as without Atomic deexitation.

The very first Test was done my standalone GEANT4 simulation for 20KeV photons

(1e+6 events ) with activated deexcitation processes (FLUO, PIXE ) and then with deactivated
deexcitation processes without energy cut with the layers structure like central beam pipe wall.
The difference in the energy spectra is on the level of ~ 1e-4 (number of entries) .

With the estimated hit rate in Ti+Be part of beam pipe as 2.2e+5 hit/bunch (both rings)

its unlikely to expect significant contribution of the atomic deexcitation processes to PXD
occupancy.

Test run for LER was done with 1e+7 initial positrons and no deexcitation processes
observed.



Conclusions

With the latest version of central beam pipe geometry the contribution of:

1. Misalignment to PXD occupancy is much less than the limit for HER
(0.17% - dominating ) and negligible for LER (~2e-3%).

2. Beam halo to PXD occupancy is negligible for both HER and LER (< 0.001%).

3.The halo shape from beam-beam simulation gives much lower (< 5e-7) fraction
of tails beyond 100x (300y) than taken in simulation (1e-5) and therefore even
smaller contribution to PXD occupancy.

4. Atomic deexitation processes do not contribute to occupancy significantly.
Occupancy in PXD1 from SynRad background:
LER{2e-3%(misalignment) + 1e-4%(halo)}

+ HER{0.17%(misalignment) + 1e-3%(halo)}
= 0.17%
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Additional material



The latest estimation of occupancy in PXD with previous version of geometry:

Occupancy in one half ladder at ¢ ~0 :
0.5%(SR HER ideal alignment only!) + 0.15%(SR LER incl. misalignment
and halo with 100 of the beam core) — 0.65%.

Occupancy in all other ladders : 0.5%(SR HER)
Occupancy could be larger taking into account misalignment for HER.



HER - 5um of gold plating,ideal alignment

About 34% of bunch charge of HER simulated with the energy cut 3.7KeV that corresponds
about the same stopping power for 5um of gold as 5KeV for 10um.

Number of hits per bunch crossing:

Sum && 3.7KeV 10um && 5KeV
Be part 2.3e+3 £ 100 1.4e+3 £ 100
Ti part 1.9e+5 £ 800 1.3e+5 = 600

Occupancy — the same value as for 10um within statistical uncertainties.

10um — (0.06 £ 0.04)% 5um — (0.05 + 0.035)%



Detector misalignment.

Two kind of misalignment:
1. Misalignment of the detector (i.e. central beam pipe) with respect to the orbit.
2. Misalignment of the magnets.
Only first type of misalignment is considered here.
Experts : Maximal expected misalignment = £0.5mm.

In the first case the misalignment may occur at the position of the bellows at +482mm
from IP.

Two possible extreme cases : Rotation and Displacement.

In case of rotation the shift of 0.5mm at bellow positions would propagate to 0.1Tmm

at the “dangerous” part of central beam pipe (at -Z), the maximal angle of rotation = 0.06°.
In case of displacement the shift on 0.5mm at bellow positions would give the same
value of shift on 0.5mm for the whole central beam pipe.

The displacement of the beam pipe on -0.5mm (towards center of the accelerator ring)
along X-axis is considered as most dangerous misalignment .

Changes in SynRad background due to misalignment of the detector can be estimated
using available MC files.

Photon's tracks parameters — extrapolating tracks in the geometry with misalignment —
— changes in number of hits and occupancy.
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Misalignment - HER
Z, 0 and ¢ of photons in Be part of beam pipe

¢ of SR photons that hit be part of beam pipe
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Comparison of misalignment in different directions.
Lattice version sler_1682, previous beam pipe design.
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Beam halo HER (gaussian halo)
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Beam halo HER (gaussian halo)
O distribution
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All SR photons that hit PXD1 are back scattered.



Beam halo HER (gaussian halo)
Energy spectrum

Energy of SR photons in the Be part of Beam pipe
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Beam halo HER (gaussian halo)
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