

Simulation of Synchrotron Radiation	PySynRad	Geant4	Results	Conclusions
Simulation of Synchrotron	Radiation			

use Geant4 directly (see Yuris talk)

- allows for complicated magnetic fields (leak/fringe fields)
- well tested, already available
- time consuming to simulate that many electrons

Use SRGEN (Belle, CLEO)

- specialized generator, fast
- uses simplified magnetic field calculation
- requires its own beampipe geomentry
- PySynRad, python based synchrotron radiation generator
 - based on SRGEN
 - uses SuperKEKB lattice from SAD
 - beampipe geometry independent
 - not fully validated

Simulation of Synchrotron Radiation	PySynRad	Geant4	Results	Conclusions
PySynRad				

- written by Andreas Moll
- available at https://github.com/portrain/PySynRad

Principle:

- 1. load SuperKEKB magnet lattice (+ HER leak field)
- 2. start at IP using SuperKEKB design twiss parameters
- 3. generate and save synchrotron radiation energy spectrum
- 4. propagate stepwise and calculate optimal orbit, deviation, twiss parameters
- 5. on each step, integrate over 10 sigma in 200×200 steps, at each point calculate the local curvature, radiation cone and the number of emitted photons.
- 6. discard points with radiation cone not pointing towards the IP
- 7. save position, direction and number of photons at each point.
- simulate photons using Geant4

Simulation of Synchrotron Radiation	Simul	ation	of Svn	chroti	on Ra	diation
-------------------------------------	-------	-------	--------	--------	-------	---------

PySynRad Geant4 Results PySynRad vs. SAD

Simulation of Synchrotron Radiation	PySynRad	Geant4	Results	Conclusions
PySynRad vs. SAD				

- very good agreement with SAD
- deviations at large |s| due to accumulation of inaccuracies

Simulation of Synchrotron Radiation	PySynRad	Geant4	Results	Conclusions
Geant4 Simulation				

photons are simulated using Geant4 (integrated 20 ns)

- load energy spectrum and sample points from file
- for each point
 - determine energy of photons from spectrum, cut at 5 keV
 - distribute direction evenly in radiation cone
- simulate generated photons
- save hit positons on beampipe

Simulation of Synchrotron Radiation	PySynRad	Geant4	Results	Conclusions
Geant4 Simulation				

- so far, everything looks consistent with Yuris study
- majority of beampipe hits at $\phi = o$

Simulation of Synchrotron Radiation	PySynRad	Geant4	Results	Conclusions
ТоуМС				

To extrapolate to PXD readout frame (20 µs) Andreas used ToyMC

- use ϕ , *z*, *p_x*, *p_y*, *p_z* of beampipe hits
- divide in three bins in *z* and ϕ respectively
- model correlations

use Geant4 to simulate photons according to ToyMC PDF

Simulation of Synchrotron Radiation	PySynRad	Geant4	Results	Conclusions
Results				

- LER: not important
- HER: highest occupancy around 180 degree
- ▶ HER: much larger than Yuris estimation

PySynRad	Geant4	Results	Conclusions
	PySynRad	PySynRad Geant4	PySynRad Geant4 Results

- blue dots: photoelectric effect, green dots: compton scattering
- large occupancy due to backscattered photons

Simulation of Synchrotron Radiation	PySynRad	Geant4	Results	Conclusions
Results, examined				

- large occupancy around $\phi = 180^{\circ}$ due to backscattering
- shape consistent with study by Pit (using Yuris results)
- occupancy much larger than previous studies

Photon Z vs Phi - Layer 2

Simulation of Synchrotron Radiation	PySynRad	Geant4	Results	Conclusions
Conclusions				

PySynRad

- optimized synchrotron radiation generator based on SRGEN
- use full SAD SuperKEKB lattice

Occupancy

- larger occupancy at 180°
- distribution consistent with studies by Pit Vanhoefer
- occupancy rather large (0.1%)
- need to localize possible differences

Simulation of	Synchrotron	Radiation
---------------	-------------	-----------

