Spatial resolved radiation length (X/X_0) measurements of DEPFET pixel sensors using EUDET tracks

Ariane Frey, Benjamin Schwenker and Ulf Stolzenberg*

University of Göttingen, II. Physikalisches Institut

May 27th 2014, 16th International DEPFET Workshop

Ariane Frey, Benjamin Schwenker and Ulf Stolzenberg*

University of Göttingen

Method for measuring X/X_0

Measurement Procedure

- Use tracks from the EUDET pixel telescope to reconstruct angle distributions from multiple scattering (MSC) on a central plane
- The width of these distributions depend on the radiation length X/X_0 of the crossed material
- Is a spatial resolved X/X₀ measurement (with errors below 10%) possible, when using a EUDET telescope and a beam energy of a few GeV?
- What problems do occur during the measurement process?

Multiple scattering

- A particle with momentum p and charge q crosses matter with the radiation length X/X₀
- MSC projected angular distribution (u-z plane) \approx Gaussian function with $\sigma_{\rm p}$ given by Highland Formula (HL)
 - Analog: v-z plane

Highland Formula(only small scattering angles)

$$\sigma_{\rm p} = \frac{0.0136 \cdot q[e]}{\beta \cdot p \, [\text{GeV}]} \cdot \sqrt{\frac{X}{X_0}} \left(1 + 0.0038 \ln \left(\frac{X}{X_0}\right)\right) \text{rad}$$

V. L. Highland, Some practical remarks on multiple scattering, Nuclear Instruments and Methods, 1975

Ariane Frey, Benjamin Schwenker and Ulf Stolzenberg*

University of Göttingen

DEPFET H4&H5 maps

MSC Models

Ariane Frey, Benjamin Schwenker and Ulf Stolzenberg*

University of Göttingen

Reconstruction of MSC angles in a EUDET teleskop

- Reconstruct angles on the DEPFET
- Particle crosses sensor \rightarrow hits

▲ロト ▲聞 ト ▲臣 ト ▲臣 ト ―臣 ― のへの…

Ariane Frey, Benjamin Schwenker and Ulf Stolzenberg* University of Göttingen Spatial resolved radiation length (X/X_0) measurements of DEPFET pixel sensors using EUDET tracks 5/12

Reconstruction of MSC angles in a EUDET teleskop

- Reconstruct angles on the DEPFET
- Particle crosses sensor → hits
- Forward- backward Kalman Filter (KF) pair on hits
- hit on DEPFET not needed → maps
- Take MSC in air gaps into account

Ariane Frey, Benjamin Schwenker and Ulf Stolzenberg*

University of Göttingen

Reconstruction of MSC angles in a EUDET teleskop

- Reconstruct angles on the DEPFET
- Particle crosses sensor \rightarrow hits
- Forward- backward Kalman Filter (KF) pair on hits
- hit on DEPFET not needed → maps
- Take MSC in air gaps into account
- θ_p calculated from (m_u, m_v)
- Reco error $\sigma_{\rm reco}$ from error propagation

Ariane Frey, Benjamin Schwenker and Ulf Stolzenberg*

University of Göttingen

Example of a reconstructed angle distribution

Composition of the Reco Distribution

Reconstructed MSC angle distribution is a convolution between the truth MSC distribution and a Gaussian noise distribution caused by the reconstruction errors

Example of a reconstructed angle distribution

Problem 1: Fitting the Reco Distribution

Non-Gaussian tails and convolution with Gaussian noise function complicate the fit \rightarrow A stable fitting method is needed

 Ariane Frey, Benjamin Schwenker and Ulf Stolzenberg*
 University of Göttingen

 Spatial resolved radiation length (X/X_0) measurements of DEPFET pixel sensors using EUDET tracks
 6/12

Example of a reconstructed angle distribution

Problem 2: Gaussian noise is dominant for thin materials

- \rightarrow relative errors of $\sigma_{\rm reco}$ must be known well (< 10%). To ensure this, we need:
 - Accurate knowledge of telescope geometry, beam energy, good tracking model
 - Calibration measurements for the reconstruction errors
 - $ightarrow \sigma^*_{
 m reco} = \lambda \cdot \sigma_{
 m reco}$ with calibration factor λ

Ariane Frey, Benjamin Schwenker and Ulf Stolzenberg*

University of Göttingen

Solution of the 1. problem: Template fits

Templates

- Template: Distribution of MSC angles from simulations
- Add Gaussian noise due to $\sigma_{
 m reco}$

Template Fit

- Produce several templates based on different X/X_0 or $\sigma_{\rm reco}$ values in a certain range
- Compare the templates and the distribution via Kolmogorov-Smirnov-Test (KS)

Problems

- Large track sample needed
- Only feasible in small X/X_0 ranges

Ariane Frey, Benjamin Schwenker and Ulf Stolzenberg*

University of Göttingen

• • • • • • • • • • •

$\sigma_{ m reco}$ calibration

Best calibration scenario

- Test beam (TB) calibration runs with material plane of precisely known X/X_0
- $\sigma_{
 m reco}$ determined from error propagation
- use template fits with fixed X/X_0 to determine $\sigma^*_{\rm reco}$

 \rightarrow Calibration factor $\lambda = \sigma_{\rm reco}^* / \sigma_{\rm reco}$

$\sigma_{ m reco}$ calibration

Here: Calibration via Monte Carlo (MC) data

- Use TB Run MC Simulation $\rightarrow X/X_0$ known
- MSC model of the real particle: MSC simulation based on single scatterings
- Tracking MSC model: Highland model

 \rightarrow Correction of the errors (on $\sigma_{\rm reco})$ coming from HL Model in the tracking

Here: Calibration via Monte Carlo (MC) data

- Use TB Run MC Simulation $\rightarrow X/X_0$ known
- MSC model of the real particle: MSC simulation based on single scatterings
- Tracking MSC model: Highland model

 \rightarrow Correction of the errors (on $\sigma_{\rm reco})$ coming from HL Model in the tracking

- 3.75 GeV electrons, $\sigma_{\rm reco} = 173 \mu {\rm rad}$
- Hybrid 4 module

Ariane Frey, Benjamin Schwenker and Ulf Stolzenberg*

University of Göttingen

Here: Calibration via Monte Carlo (MC) data

- Use TB Run MC Simulation $\rightarrow X/X_0$ known
- MSC model of the real particle: MSC simulation based on single scatterings
- Tracking MSC model: Highland model

 \rightarrow Correction of the errors (on $\sigma_{\rm reco})$ coming from HL Model in the tracking

Ariane Frey, Benjamin Schwenker and Ulf Stolzenberg*

University of Göttingen

DEPFET H4&H5 maps

Conclusion

DEPFET Hybrid 4 Map

Ariane Frey, Benjamin Schwenker and Ulf Stolzenberg*

< 4 ₽ > < 3

University of Göttingen

DEPFET Hybrid 4 Map

- tracksample: 1.8 Mio Tracks, pixel size: 200μm x 200μm
- fitting: Gaussian fit on distribution without tails (6% cuts on either side)
- calibration factor $\lambda = 1.1$
- use indicated profiles to compute X/X₀ in different regions of the map
- u profile: sum over 24 pixels
- v profile: sum over 8 pixels

< □ > < ---->

DEPFET Hybrid 4 Map

Ariane Frey, Benjamin Schwenker and Ulf Stolzenberg* University of Göttingen Spatial resolved radiation length (X/X_0) measurements of DEPFET pixel sensors using EUDET tracks 9/12

Image: Image:

DEPFET Hybrid 4 Map

Ariane Frey, Benjamin Schwenker and Ulf Stolzenberg* University of Göttingen Spatial resolved radiation length (X/X_0) measurements of DEPFET pixel sensors using EUDET tracks 9/12

DEPFET H4&H5 maps

Conclusion

DEPFET Hybrid 4 Map

DEPFET H4&H5 maps

Conclusion

DEPFET Hybrid 4 Map

DEPFET H4&H5 maps

Conclusion

DEPFET Hybrid 4 Map

DEPFET H4&H5 maps

Conclusion

DEPFET Hybrid 4 Map

Results

Measurement results

$$\begin{array}{rcl} (X/X_0)_{\rm PCB+Si+Al} &=& (1.96 \pm 0.02) \,\% \\ (X/X_0)_{\rm PCB+Al} &=& (1.54 \pm 0.02) \,\% \\ (X/X_0)_{\rm Si+Al} &=& (0.510 \pm 0.04) \,\% \\ (X/X_0)_{\rm ThinSi+Al} &=& (0.16 \pm 0.003) \,\% \end{array}$$

Radiation length and thickness of the silicon chip

$$(X/X_0)_{\rm SiChip} = (X/X_0)_{\rm PCB+Si+Al} - (X/X_0)_{\rm PCB+Al}$$

= $(0.42 \pm 0.03) \%$
 $\rightarrow d_{\rm SiChip} = (390 \pm 30) \, \mu {
m m} \ ({
m expected} : 420 \, \mu {
m m})$

Ariane Frey, Benjamin Schwenker and Ulf Stolzenberg* University of Göttingen Spatial resolved radiation length (X/X_0) measurements of DEPFET pixel sensors using EUDET tracks 10/12

Results

Measurement results

$$\begin{array}{rcl} (X/X_0)_{\rm PCB+Si+Al} &=& (1.96 \pm 0.02) \,\% \\ (X/X_0)_{\rm PCB+Al} &=& (1.54 \pm 0.02) \,\% \\ (X/X_0)_{\rm Si+Al} &=& (0.510 \pm 0.04) \,\% \\ (X/X_0)_{\rm ThinSi+Al} &=& (0.16 \pm 0.003) \,\% \end{array}$$

Thickness difference between silicon chip and thin silicon layer

Ariane Frey, Benjamin Schwenker and Ulf Stolzenberg* University of Göttingen Spatial resolved radiation length (X/X_0) measurements of DEPFET pixel sensors using EUDET tracks 10/12

Results

Measurement results

$$\begin{array}{rcl} (X/X_0)_{\rm PCB+Si+Al} &=& (1.96 \pm 0.02) \,\% \\ (X/X_0)_{\rm PCB+Al} &=& (1.54 \pm 0.02) \,\% \\ (X/X_0)_{\rm Si+Al} &=& (0.510 \pm 0.04) \,\% \\ (X/X_0)_{\rm ThinSi+Al} &=& (0.16 \pm 0.003) \,\% \end{array}$$

Radiation length and thickness of the sensitive area

 Ariane Frey, Benjamin Schwenker and Ulf Stolzenberg*
 University of Göttingen

 Spatial resolved radiation length (X/X_0) measurements of DEPFET pixel sensors using EUDET tracks
 10/12

・ロト ・回ト ・ヨト

Results

Measurement results

$$\begin{array}{rcl} (X/X_0)_{\rm PCB+Si+Al} &=& (1.96 \pm 0.02) \,\% \\ (X/X_0)_{\rm PCB+Al} &=& (1.54 \pm 0.02) \,\% \\ (X/X_0)_{\rm Si+Al} &=& (0.510 \pm 0.04) \,\% \\ (X/X_0)_{\rm ThinSi+Al} &=& (0.16 \pm 0.003) \,\% \end{array}$$

Radiation length of the PCB

Ariane Frey, Benjamin Schwenker and Ulf Stolzenberg* University of Göttingen Spatial resolved radiation length (X/X_0) measurements of DEPFET pixel sensors using EUDET tracks 10/12

DEPFET Hybrid 5 Map

 Ariane Frey, Benjamin Schwenker and Ulf Stolzenberg*
 University of Göttingen

 Spatial resolved radiation length (X/X_0) measurements of DEPFET pixel sensors using EUDET tracks
 11/12

Image: A matrix and a matrix

Conclusion and future plans

Conclusion

- A method to estimate the spatial resolved radiation length has been developed and tested on TB data
- Relative and absolute values of X/X_0 can be determined
- A calibration of the reconstruction errors is needed for a precise measurement of the radiation length of thin materials ($100 \ \mu m \text{ Si}$)

Future plans

- What are the effects of other systematicals like energy loss of the particle beam in the telescope?
- Larger track samples/merging track samples: Improve spatial resolution in the map and reduce statistical errors of the pixels

Introduction	Rekonstruction of MSC angles	$\sigma_{ m reco}$ calibration	DEPFET H4&H5 maps	Conclusion

Many Thanks for your attention!

Ariane Frey, Benjamin Schwenker and Ulf Stolzenberg*

University of Göttingen

Introduction	Rekonstruction of MSC angles	$\sigma_{ m reco}$ calibration	DEPFET H4&H5 maps	Conclusion

Back Up Slides

 Ariane Frey, Benjamin Schwenker and Ulf Stolzenberg*
 University of Göttingen

 Spatial resolved radiation length (X/X_0) measurements of DEPFET pixel sensors using EUDET tracks
 12/12

Kolmogorov Smirnov Test

- Used for testing, if two data sets are based on the same PDF
- Test parameter: maximum distance between the two cumulative distributions
- Used here: 5 % significance level
- Critical value for the test parameter: $D_{\text{max}} = \frac{1.36}{\sqrt{N}}$, N: Number of data points

Forward and Backward KF

Forward KF

- gives In-State
- prediction of track state on sensor i+1 based on tracks state i

- F: Extrapolation matrix
- Q: MSC effects

Backward KF

- gives Out-State
- prediction of track state on sensor i based on tracks state i+1

$$\begin{aligned} \eta_i &= F_{i+1 \to i} \eta_{i+1} \\ V_i &= F_{i+1 \to i} V_{i+1} F^{\mathrm{T}}_{i+1 \to i} \\ &+ Q_{\mathrm{B};i+1} \end{aligned}$$

2

Ariane Frey, Benjamin Schwenker and Ulf Stolzenberg*	University of Göttingen
Spatial resolved radiation length (X/X_0) measurements of DEPFET pixel sensors using EUDET tracks	s 12 / 12