DEPFETs for electron detectors – The Molecular Movie – Sascha Epp

npsd

We seek for help! Join the team...!

Laci Andricek, Christian Koffmane, Jelena Ninkovic, Rainer Richter, Florian Schopper, Johannes Treis, Andreas Wassatsch Ivan Peric (U-HD) S. W. E Dwayne Miller (Head of Department) Ibrahym Dourki Fabian Westermeier Stuart Hayes, Stephanie Manz, Kostya Pichugin Hossein Delsim-Hashemi, Shima Bayetesh

Electron diffraction The wave-particle duality of particle beams

0.1 A corresponds to 100 keV X-rays

> We exploit the wave nature of the electron

Need to detect electrons (sig.-to-noise)

direct-hit detector

-in-direct hit detector

Diffraction out to less than 0.2Å!

MAADEANDKOUSILLSCHWE

The "Molecular Dance" Functionally important protein motions

What is the mechanism of correlated atomic displacements? Structure - Function Correlation P resolve atomic motions on timescales faster than the onset of diffusive motions.....observe force correlations

Static & Dynamic Time scales

Max Planck Institute for Structure and Dynamics of Matter

MAADLANDKOUSILLSUHWE

Experiments Large scale

Experiments Small scale & with e-

- keV FED solid state
- keV FED liquid phase
- keV FED gas phase
- REGAE Diffraction
- keV time-resolved TEM
- REGAE Dynamic RTEM

Different types of movies Stroboscopic & real time

Imposes different requirements on the detector !

Shutter speed = fast

Shutter speed = super fast

Repetition rate = high

Repetition rate = low

AA PLANEK UTSTELSCHMT

UED k-space

>10,000 electrons on detector are need to attain qualitative diffraction information

problem dependent: more electrons on detector are need to attain quantitative diffraction information

TEM real space

up to 1e8 electrons on detector are need to attain sufficient information

mpsd

accordingly more need to be produced at the cathode

Further Evolution in atom gazing:Solution Phase Dynamics

TEM nanocell with flow!

cross sectional view

Christina Müller, U Toronto

amyloid fibrils

Detector specifications Two different detector systems

	Direct hit detector	Ultrafast detector		
Sensor active area	(50 x	50) mm² 60mm x 60mm		
Sensor size in pixel	1000	4 x (500 x 500)		
Physical pixel size	50 μm (subject to change)	0 μm (subject to change)		
Detection principle	DEPFET direct e- hit Non-linear			
Read out mode	<u>2x</u> rolling	shutter 4x <u>4x</u>		
Read out speed	>1000 Hz full frame rate (continuously)	~0.1 MHz full frame rate for 100 frames <u>80kHz</u>		
Electronic noise contribution	1	00 e-		
Sensor thickness	50 μm (down to 30 μm possible) <u>+</u>	<u>50 μm</u> 450 μm support		
Pixel well depth (TCH)	60 000 (impr <mark>ovement is part of work packag</mark> e #1) 0.5M - 1M			
Operating temperature	moderate cooling0 °C			
Radiation hardness (pixel)	10Mrad	-protected-		
Primary e- energy range	80 keV-5 MeV	80 keV-350 keV		
Range of Ø num. secondary e-	between 5k-12k	→ typically 1000 per 0.1 MeV		
Table 2: Detector specifications				

mpsd

Real space images

Radiation damage II – best case

2.5V shift after 3Mrad almost linear increase 0.35V/Mrad (needs confirmation)

Detector specifications Two different detector systems

	Direct hit detector	Ultrafast detector			
Sensor active area	(50 x	⁰⁾ mm ² 60mm x 60mm			
Sensor size in pixel	1000	<u>4 x (500 x 500)</u>			
Physical pixel size	50 μm (subject to change)	50 μm (subject to change)			
Detection principle	DEPFET direct e- hit Non-linear				
Read out mode	<u>2x</u> rolling	shutter 4x <u>4x</u>			
Read out speed	>1000 Hz full frame rate (continuously)	~0.1 MHz full frame rate for 100 frames <u>80kHz</u>			
Electronic noise contribution	1	00 e-			
Sensor thickness	50 μm (down to 30 μm possible) <u>+</u>	<u>50 μm</u> 450 μm support			
Pixel well depth (TCH)	60	000			
	(Improvement is pa <u>0.51</u>	rt of work package #1) <u>1 – 1M</u>			
Operating temperature	moderate	e cooling0 °C			
Radiation hardness (pixel)	10Mrad	-protected-			
Primary e- energy range	80 keV-5 MeV	80 keV-350 keV			
Range of Ø num. secondary e-	between 5k-12k	> typically 1000 per 0.1 MeV			
Table 2: Detector specifications.					

mpsd

Real space images

 Direct Hit (DH1k) and ultra fast detector DH80k need different read-out due to their different frame rates:

	Direct Hit (DH1k)	DH80k
Frame Rate	1 kHz	80 kHz
Data Stream	Continuously	Burst with 100 frames
Read-out	DCDEMCv1 + FPGA or DCDEMCv2 +DEPFET Movie chip	DCDB? + DEPFET Movie Chip
Pixel arrangement	512 x 512 2 fold readout	512 x 512 4-fold readout
ADC resolution	8 bit?	8 bit
Image type	Momentum space image	Real space image (additional pixels for Common Mode correction needed)

2 fold read-out

Direct Hit Detector – FDH80k

Detector specifications Two different detector systems

	Direct hit detector	Ultrafast detector		
Sensor active area	(50 x	50) mm ² 60mm x 60mm		
Sensor size in pixel	1000	<u>4 x (500 x 500)</u>		
Physical pixel size	50 μm (subject to change)	0 μm (subject to change)		
Detection principle	DEPFET direct e- hit Non-linear			
Read out mode	<u>2x</u> rolling	shutter 4x <u>4x</u>		
Read out speed	>1000 Hz full frame rate (continuously)	~0.1 MHz full frame rate for 100 frames <u>80kHZ</u>		
Electronic noise contribution	1	00 e-		
Sensor thickness	50 μm (down to 30 μm possible) <u>+</u>	<u>50 μm</u> 450 μm support		
Pixel well depth (TCH)	60 000 (impr <mark>ovement is part of work packag</mark> e #1) <u>0.5M - 1M</u>			
Operating temperature	ambient moderate	temperature e cooling0 °C		
Radiation hardness (pixel)	10Mrad	-protected-		
Primary e- energy range	80 keV-5 MeV	80 keV-350 keV		
Range of Ø num. secondary e-	between 5k-12k	> typically 1000 per 0.1 MeV		
Table 2: Detector specifications.				

mpsd

Real space images

Max Planck Institute for Structure and Dynamics of Matter

Detector specifications Two different detector systems

	Direct hit detector	Ultrafast detector		
Sensor active area	(50 x 5	0) mm ² 60mm x 60mm		
Sensor size in pixel	1000	x 1000 <u>4 x (500 x 500)</u>		
Physical pixel size	50 μm (subject to change) <u>60</u>	50 μm (subject to change)		
Detection principle	DEPFET direct e- hit Non-linear			
Read out mode	<u>2x</u> rolling s	nutter 4x <u>4x</u>		
Read out speed	>1000 Hz full frame rate ~0.1 MHz full frame rate fo (continuously) 100 frames 80kH			
Electronic noise contribution	10	0 e-		
Sensor thickness	50 μm <u>5</u> (down to 30 μm possible) <u>+ s</u>	<u>) µm</u> 450 µm <u>upport</u>		
Pixel well depth (TCH)	60 000 (impr <mark>ovement is part of work packag</mark> e #1) 0.5M - 1M			
Operating temperatur	ambient temperature moderate cooling0 °C			
Radiation hardness (pixel)	10Mrad	-protected		
Primary e- energy range	80 keV-5 MeV	80 keV-350 keV		
Range of Ø num. secondary e-	between 5k-12k	typically 1000 per 0.1 MeV		
Table 2: Detector specifications.				

mpsd

Real space images

Johannes Treis / Halbleiterlabor der MPG

- 30 mm detector + 100 mm thermal substrate
- No cross support
- 0.5 mm CVD diamond with 1800 W / (m x K) thermal conductivity
- Maximal gradient 5.8°C (!)

Johannes Treis / Halbleiterlabor der MPG

Detector specifications Two different detector systems

	Direct hit detector	Ultrafast detector		
Sensor active area	(50 x 5	0) mm ² 60mm x 60mm		
Sensor size in pixel	1000	x 1000 <u>4 x (500 x 500)</u>		
Physical pixel size	50 μm (subject to change) <u>60</u>	50 μm (subject to change)		
Detection principle	DEPFET direct e- hit Non-linear			
Read out mode	<u>2x</u> rolling s	nutter 4x <u>4x</u>		
Read out speed	>1000 Hz full frame rate ~0.1 MHz full frame rate fo (continuously) 100 frames 80kH			
Electronic noise contribution	10	0 e-		
Sensor thickness	50 μm <u>5</u> (down to 30 μm possible) <u>+ s</u>	<u>) µm</u> 450 µm <u>upport</u>		
Pixel well depth (TCH)	60 000 (impr <mark>ovement is part of work packag</mark> e #1) 0.5M - 1M			
Operating temperatur	ambient temperature moderate cooling0 °C			
Radiation hardness (pixel)	10Mrad	-protected		
Primary e- energy range	80 keV-5 MeV	80 keV-350 keV		
Range of Ø num. secondary e-	between 5k-12k	typically 1000 per 0.1 MeV		
Table 2: Detector specifications.				

mpsd

Real space images

Detector layers Pixel direction (Straggling)

Si: 30 µm	Si: 50 µm	SiO2: 100 mm	Si 400 nm	SiO2: 200 mm	Si3N4: 50 mm	SiO2: 300 nm	Al: 1000 mm	SiO2: 1000 mm	BCB: 3000 nm	TiW: 100 nm	Cu: 100 mm→	viewer-0 (OpenGLImmediateW	
												in32)	

Sensitive Si (50µm)

Mechanical support Si (100 µm ?)

Max Planck Institute for Structure and Dynamics of Matter

AMPLANDK OF STUDIET INT

Detector specifications Two different detector systems

for Structure and Dynamics of Matter

	Direct hit detector	Ultrafast detector		
Sensor active area	(50 x 5	0) mm ² 60mm x 60mm		
Sensor size in pixel	1000 :	x 1000 <u>4 x (500 x 500)</u>		
Physical pixel size	50 μm (subject to change) <u>60</u>	50 μm (subject to change)		
Detection principle	DEPFET direct e- hit Non-linear			
Read out mode	<u>2x</u> rolling st	nutter 4x <u>4x</u>		
Read out speed	>1000 Hz full frame rate (continuously)	~0.1 MHz full frame rate for 100 frames <u>80kHZ</u>		
Electronic noise contribution	100 e-			
Sensor thickness	50 μm <u>5</u> (down to 30 μm possible) <u>+ s</u>	<u>0 μm</u> 450 μm upport		
Pixel well depth (TCH)	60 000 (impr <mark>ovement is part of work packag</mark> e #1) <u>0.5M - 1M</u>			
Operating temperature	ambient temperature moderate cooling0 °C			
Radiation hardness (pix	10Mrad	-protected-		
Primary e- energy range	80 keV-5 MeV	80 keV-350 keV		
Range of Ø num. secondary e-	between 5k-12k	typically 1000 per 0.1 MeV		
Table 2: Detector specifications.				

mpsd

Real space images

TEM movie

70.0mm 50.0mm

mpsd

> 10 e- / pixel per single frame

➢ for frames with 10M e- total, this would be 250M frames or 2.5 M movies 10 e- / A² total area charge per 100frame movie

TEM movie

Detector specifications Two different detector systems

	Direct hit detector	Ultrafast detector		
Sensor active area	(50 x	50) mm ² 60mm x 60mm		
Sensor size in pixel	1000	<u>4 x (500 x 500)</u>		
Physical pixel size	50 μm (subject to change)	50 μm (subject to change)		
Detection principle	DEPFET direct e- hit Non-linear	DEPFET with scintillator		
Read out mode	<u>2x</u> rolling	shutter 4x <u>4x</u>		
Read out speed	>1000 Hz full frame rate ~0.1 MHz full frame rate for (continuously) 100 frames 80kHz			
Electronic noise contribution	100 e-			
Sensor thickness	50 μm (down to 30 μm possible) <u>+</u>	50 μm 450 μm support		
Pixel well depth (TCH)	60 000 (impr <mark>ovement is part of work packag</mark> e #1) <u>0.5M - 1M</u>			
Operating temperature	ambient temperature moderate cooling0 °C			
Radiation hardness (pixel)	10Mrad	-protected-		
Primary e- energy range	80 keV-5 MeV	80 keV-350 keV		
Range of Ø num. secondary e-	between 5k-12k	→ typically 1000 per 0.1 MeV		
Table 2: Detector specifications.				

mpsd

Real space images

In total there are 8 work packages devoted to: 1. Sensor design, fabrication and tests [HLL]: p

 Sensor design, fabrication and tests [HLL]: pixel cell and technology, defining chip parameter, simulations, radiation hardness, layout of wafer for production, fabrication and processing of wafer, tests

- 2. Sensor module assembly [HLL]: definition of materials, assembly
- 3. Module integration [MPI-SD]: Thermal and electrical engineering and performance, definition of materials, fabrication of mechanical parts
- 4. System design [MPI-SD]: Scintillator optics, R&D for scintillator design, simulations, integration to sensor, definition and optimization of operation modes
- 5. f/e electronics [?]: ASICs design
- 6. back-end electronics [?]: FPGA system design, definition of protocols and interfaces between sensor and DAQ, Power supplies, slow control and housekeeping
- 7. DAQ and Software [MPI-SD]: definition of hardware, programming of user interface, data representation and analysis
- 8. Commissioning [HLL, MPI-SD]:

Timeline Commissioning 2016.....

Next milestones:

- > decide on sensitive layer thickness (50 µm)
- > SOI wafer production
- decide on ASICs
- > 01.01.15 start DEPFET fabrication

Thank you !!!

mpsd

GAMPEANER OF STELESCHART

objective aperture

diffraction pattern

lattice image

TASK	COST	'S [k€]	NOTES			
WP1: Sensor design, fabrication and test		-530	Includes all personnel costs at HLL			
Processing of 6 thin wafers	240		40k each			
Processing of 6 thick wafers	240					
Components for tests	50					
WP2: Sensor module assembly		-20				
WP3: Module engineering		-180				
Engineering system #1	70		consumption 20k + invest 50k			
Engineering system #2	70					
Engineering test system #1	20					
Engineering test system #2	20					
WP4: System design		-80				
Fiber optic face plate	50					
Scintillator coating	10					
Scintillator nano structuring	10					
test structures	10					
WP5: f/e electronics		-340				
ASICs switcher (system 1 & 2)	40		# 40 ASICs			
DCD (system 1 & 2)	80		# 90 ASICs			
DHP (system 1 "direct")	50		# 100 ASICs			
DHP2 (system 2)	90		# 100 ASICs "on chip memory"			
Development	70		1 man year extern (Coll.)			
ASIC tests	10		, , ,			
WP6: back-end electronics		-125				
Read out boards (system 1 "direct")	40		4 x Struck SFP->PClexp			
Read out boards (system 2 "ultrafast")	10		Struck SFP->PClexp			
Computer	30		10 workstations			
Ethernet 10G	15		10 cards			
Power supplies for 2 systems	20		100 channels -10020 V			
Fast ethernet switches	10					
WP7: DAQ and Software		-200				
Fast storage system #1 (direct)	90		Raid system			
Long-term storage	20		DESY facility			
Fast storage system #2 (scint.)	90		Raid system			
WP8: Commissioning		-15	Travel expenses			
TOTAL WP		-1490				
20 % Contingency		-317				
1.5 positions engineering staff (65k/year)		-293				
CFEL detector lab		-300				
Financial contribution MPI-SD		300				
		-2100	700k/vear			
FINANCIAL NEEDS (Phase I; 3 years) -2100 /00k/year						

Further Evolution in atom gazing:Solution Phase Dynamics

TEM nanocell with flow!

cross sectional view

amyloid fibrils

End of a stain image of a myloid fibrils

here: dried on TEM grid no scale bar available non stained amyloid sample in 115nm spaced nano-cell

200kV, HD-2000, DF imaging

HD-2000 200kV x45.0k ZC

600nm

confidential

mpsd

http://atp.ncifcrf.gov/imaging-and-nanotechnology/electron-microscopy-laboratory/eml-protocols-and-resources/eml-image-gallery/

amyloid fibrils

in 45nm spaced nanocell 200kV, HD-2000 (STEM)

amyloid fibril parts, chopped by organic solvent and flown into the viewing area

HD-2000 200kV x180k ZC

150nm

helical twist

confidential

6th Generation : Relativistic Electron Gun for Atomic Exploration (REGAE): Citius, Altius, Fortius

REGAE defines new limits in Atom Gazing

Higher bunch density/Fortius

Micro-scale samples/Altius

Higher Time Resolution/Citius Hastings, J.B. et al. Appl. Phys. Lett. 89, 184109 (2006)

Hastings, J.B. et al. Appl. Phys. Lett. 89, 184109 (2006) Musumeci, P. et al. Appl. Phys. Lett. 97, 063502 (2010). Yang JF, Kan K, Kondoh T, Yoshida, Y., Tanimura, K., Urakawa, J., Nuclear Instr. & Methods Phys. Res. A, Accelerators Spectrometers Dectors and Assoc. Equip. 637, S24-S29, 2011

Layout of REGAE

Courtesy K.F./H. D.-H.

WATE AND VOTSTELSUIT

Simulation of Beam Properties: 10⁶ – 10⁷ e Bunch Charge

Transverse Emittance

"First Light" ³⁄₄ The very first shot gave a beautiful electron beam.

10⁷ electrons/10 fs Þ single shot movies to capture even the fastest atomic motions....proteins, solution phase rxn dynamics, real space imaging of cells.....

Detector specifications Two different detector systems

■pnCCD imaging mode

100

110

120

FG/

Me\

1.2M

Rainer Richter wants to do some VooDoo for Factor 5-10

ampient temperature Might slow down the detector.....

Primary e- energy range	80 keV-5 MeV	80 keV-350 keV
Range of Ø num. secondary e-	between 5k-12k	typically 1000 per 0.1 MeV
Table 2: Detector specifications.		

Real space images

Detector specifications Two different detector systems

	Direct hit detector	Ultrafast detector		
Sensor active area	(50 x 50	0) mm²		
Sensor size in pixel	1000 >	(1000		
Physical pixel size	50 μm (subject to change)	50 μm (subject to change)		
Detection principle	DEPFET direct e- hit	DEPFET with scintillator		
Read out mode	rolling sh	nutter 4x		
Read out speed	>1000 Hz full frame rate (continuously)	~0.1 MHz full frame rate for 100 frames		
Electronic noise contribution	100 e-			
Sensor thickness	50 μm (down to 30 μm possible)	450 μm		
Pixel well depth (TCH)	60 000 (improvement is part of work package #1)			
Operating temperature	ambient temperature			
Radiation hardness (pixel)	10Mrad	protected		
Primary e- energy range	80 keV-5 MeV	80 keV-350 keV		
ange of Ø num. secondary e-	between 5k-12k	typically 1000 per 0.1 MeV		
able 2: Detector specifications.				

Real space images

