Energy deposition-based (low) momentum estimation

- Very low momentum tracks are reconstructed in VXD only: worse momentum resolution.
- Study momentum estimation based on E deposition in silicon:
 - cf.: H. Bichsel, NIM A562 (2006) 154-197.
 and: ALICE: arXiv:hepex/0104006v1
 - Should improve $\Delta p/p$ of $\pi^{\pm} < 100-150$ MeV.
 - May be used to constrain the helix fit to improve impact parameter and vertexing?
 - May be used to define an input to the track index quality (currently χ^2) to select among several track candidates?
 - May be used to define an input to reject bkg hits?
- How does it work?

After pattern recognition:

- given the clusters associated to a track
- given the track $\boldsymbol{\theta}$
- if you know that your track is due to a π
- → estimate momentum based on E deposition in silicon detectors in the sensitive region where $\Delta E \sim I/\beta^2$.
- In VXD: all layers provide analogue read-out output.
 - · PXD: 2 silicon pixel layers with 5 bits ADC,
 - SVD: 4 DSS layers with 10 bits ADC.

I. Ripp-Baudot Belle II tracking meeting April 4th, 2014

Very low momentum tracks?

perpendicular tracks (θ = 90°) need: ~ 40 MeV to reach the CDC
 ~ 150 MeV to reach the middle of the CDC.
 ECL: radius = 125 - 162 cm
 ~ need: ~ 330 MeV to reach the middle of the ECL (~ destroyed).

p, K, π stopping power = f(p)

5000 **perpendicular** particles generated π , momentum 40-1000 MeV, (N.B.: $\theta = 90^{\circ}$ and only VXD simulated \rightarrow curling tracks \rightarrow more hits).

need > 200 MeV to cross > I SVD layer.

Kaons: need ~150 MeV to cross > 1 SVD layer.

always cross the whole SVD

→ low momentum track with at least 3 clusters is a π . (electron case on next slide)

electrons??

Up to ~ 120 MeV: π tracks can be disentangled from electrons (and also from K, p).

basf2 input parameters

- No pattern recognition and no track reconstruction applied in the Energy deposition study (of course yes to produce the helix-fit momentum resolution curve).
- Simulation inputs:
 - Generator: ParticleGun, exactly I π^{\pm} shot /event.
 - Momentum distribution: uniform distribution between 40 MeV and 1.2 GeV, or fixed value.
 - θ distribution: uniform in cosθ within acceptance [17., 150.]° or fixed value.
 - φ distribution: uniform within [0., 360.]°
 - Detector simulation:

restricted to: MagneticField, BeamPipe, PXD, SVD (at the beginning).

or whole Belle II detector simulation (now because I realised that π may be destroyed in calorimeter or curl back).

Energy deposition in silicon

- Up to now: only SVD studied.
 For each already-reconstructed track: compute mean value of Energy deposition in 1 layer with reconstructed hits.
 - trunc_mean = mean of Energy deposition in each SVD layer but the 2 highest values (mainly measured from same wafer) to reduce the Landau tail.

Double-sided layer measurement

- Good correlation between the 2 measurements by a same wafer for a crossing particle, but mean value ≠ 1:
 - Is it due to the different orientation of both sides strips w.r.t. the crossing track?
 - Or is it due to a \neq gain on both sides?
 - Or something else?
 - Should be taken into account if we want to further improve the momentum resolution.
- Observed: different cluster sizes on both sides:
 → mean ratio ≠ I may be due to strip orientation.

charge-of-cluster(N) / charge-of-cluster(N-I) (if same sensor)

> 1000 π momentum = 80 MeV $θ = 45^{\circ}$ whole detector simulated

E deposition truncated mean distributions

Quality of the momentum estimation will depend on:

- separation between MPV
- dispersion of the distribution

Edeposit vs. momentum

Momentum estimation from Edeposit

- uncertainty bars:
 Iσ coverage
- points: central dE/dx value (Landau MPV)

ΔE-momentum residue (preco - ptrue)

htemp

Intries

2917

Helix-momentum resolution $\Delta p/p$

Momentum resolution

Bias

Adding DepFET information

with: path = layer-width / sin θ_{track} ;

and: layer-width_{SVD} = 300 μ m, layer-width_{PXD} = 70 μ m (correct?)

Need to stick (calibrate) ΔE_{PXD} to ΔE_{SVD} , due to different electronic gains.

- → still, does not take into account:
 - Larger ΔE fluctuations due to smaller path in DepFET layers ;
 - Different precision on ΔE due to different ADC dynamic ranges in SVD w.r.t PXD.
 - Energy loss along the path (also true for SVD-only method).
- ΔE fluctuations could be taken into account by switching to a maximum likelihood method using a Moyal function.

Should also improve momentum resolution if estimation with SVD only.

Comments and next steps

- Generalisation for tracks $\forall \theta$: done.
 - · Switch from ΔE /layer to dE/dx (take into account actual path length = layer-width / sin θ).
 - Checked for SVD layers: works fine, same resolution as at 45°.
- No pattern recognition applied in this study:

based on clusters associated to a simulated particle \rightarrow best case! Only correct clusters used: what resolution reached in real life?

- Adding DepFET clusters: does it help?
- Resolution of momentum estimated through Energy deposition in silicon layers could be further improved:
 - Correct for the difference between both sides measurement.
 - Take Energy loss and momentum decrease in each layer into account (see next slide).
 - MIP : $E_{loss} \sim 120 \text{ keV/layer}$ (300 µm of silicon)
 - 100 MeV: K $E_{loss} \sim 1$ MeV/layer $\pi E_{loss} \sim 0.3$ MeV/layer
 - 50 MeV: K $E_{loss} \sim 10$ MeV/layer $\pi E_{loss} \sim 0.7$ MeV/layer
 - Switch to a likelihood fit using a Moyal function, or add Variance and Skewness information (has already been investigated).
 - \rightarrow not clear if further improvements are needed w.r.t. the simple 1/ β^2 parametrisation.

Energy loss after each layer crossing

E deposition actually increases with crossed layers (momentum decreases).
 But ΔE seems <~ E fluctuations.
 Other hint: I/β² parametrisation seems suitable (fit is nice).